mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-10-04 04:27:29 +00:00
Return nan if val loader is empty (#124)
This commit is contained in:
parent
7740d556a0
commit
c70ddff558
@ -255,7 +255,9 @@ def calc_loss_batch(input_batch, target_batch, model, device):
|
||||
|
||||
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
||||
total_loss = 0.
|
||||
if num_batches is None:
|
||||
if len(data_loader) == 0:
|
||||
return float("nan")
|
||||
elif num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
|
@ -1090,7 +1090,9 @@
|
||||
"\n",
|
||||
"def calc_loss_loader(data_loader, model, device, num_batches=None):\n",
|
||||
" total_loss = 0.\n",
|
||||
" if num_batches is None:\n",
|
||||
" if len(data_loader) == 0:\n",
|
||||
" return float(\"nan\")\n",
|
||||
" elif num_batches is None:\n",
|
||||
" num_batches = len(data_loader)\n",
|
||||
" else:\n",
|
||||
" # Reduce the number of batches to match the total number of batches in the data loader\n",
|
||||
|
@ -34,7 +34,9 @@ def calc_loss_batch(input_batch, target_batch, model, device):
|
||||
|
||||
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
||||
total_loss = 0.
|
||||
if num_batches is None:
|
||||
if len(data_loader) == 0:
|
||||
return float("nan")
|
||||
elif num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
|
@ -249,7 +249,9 @@ def calc_loss_batch(input_batch, target_batch, model, device):
|
||||
|
||||
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
||||
total_loss = 0.
|
||||
if num_batches is None:
|
||||
if len(data_loader) == 0:
|
||||
return float("nan")
|
||||
elif num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
|
@ -26,7 +26,9 @@ HPARAM_GRID = {
|
||||
|
||||
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
||||
total_loss = 0.
|
||||
if num_batches is None:
|
||||
if len(data_loader) == 0:
|
||||
return float("nan")
|
||||
elif num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
|
Loading…
x
Reference in New Issue
Block a user