mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-15 04:01:44 +00:00
add exercise solutions
This commit is contained in:
parent
e827b42e1e
commit
c8825b7c22
176
appendix-A/03_main-chapter-code/exercise-solutions.ipynb
Normal file
176
appendix-A/03_main-chapter-code/exercise-solutions.ipynb
Normal file
@ -0,0 +1,176 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exercise A.3"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"\n",
|
||||
"class NeuralNetwork(torch.nn.Module):\n",
|
||||
" def __init__(self, num_inputs, num_outputs):\n",
|
||||
" super().__init__()\n",
|
||||
"\n",
|
||||
" self.layers = torch.nn.Sequential(\n",
|
||||
" \n",
|
||||
" # 1st hidden layer\n",
|
||||
" torch.nn.Linear(num_inputs, 30),\n",
|
||||
" torch.nn.ReLU(),\n",
|
||||
"\n",
|
||||
" # 2nd hidden layer\n",
|
||||
" torch.nn.Linear(30, 20),\n",
|
||||
" torch.nn.ReLU(),\n",
|
||||
"\n",
|
||||
" # output layer\n",
|
||||
" torch.nn.Linear(20, num_outputs),\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" def forward(self, x):\n",
|
||||
" logits = self.layers(x)\n",
|
||||
" return logits"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Total number of trainable model parameters: 752\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model = NeuralNetwork(2, 2)\n",
|
||||
"\n",
|
||||
"num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
|
||||
"print(\"Total number of trainable model parameters:\", num_params)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Exercise A.4"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"id": "qGgnamiyLJxp"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"\n",
|
||||
"a = torch.rand(100, 200)\n",
|
||||
"b = torch.rand(200, 300)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "CvGvIeVkLzXE",
|
||||
"outputId": "44d027be-0787-4348-9c06-4e559d94d0e1"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"63.8 µs ± 8.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%timeit a @ b"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"id": "OmRtZLa9L2ZG"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a, b = a.to(\"cuda\"), b.to(\"cuda\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/"
|
||||
},
|
||||
"id": "duLEhXDPL6k0",
|
||||
"outputId": "3486471d-fd62-446f-9855-2d01f41fd101"
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"13.8 µs ± 425 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%timeit a @ b"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"id": "Zqqa-To2L749"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"gpuType": "V100",
|
||||
"machine_shape": "hm",
|
||||
"provenance": []
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
@ -142,7 +142,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.12"
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
328
ch02/01_main-chapter-code/exercise-solutions.ipynb
Normal file
328
ch02/01_main-chapter-code/exercise-solutions.ipynb
Normal file
@ -0,0 +1,328 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ab88d307-61ba-45ef-89bc-e3569443dfca",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Chapter 2 Exercise solutions"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6f678e62-7bcb-4405-86ae-dce94f494303",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Exercise 2.1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "7614337f-f639-42c9-a99b-d33f74fa8a03",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tiktoken\n",
|
||||
"\n",
|
||||
"tokenizer = tiktoken.get_encoding(\"gpt2\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "664397bc-6daa-4b88-90aa-e8fc1fbd5846",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[33901]"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer.encode(\"Ak\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "d3664332-e6bb-447e-8b96-203aafde8b24",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[86]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer.encode(\"w\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "2773c09d-c136-4372-a2be-04b58d292842",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[343]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer.encode(\"ir\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "8a6abd32-1e0a-4038-9dd2-673f47bcdeb5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[86]"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer.encode(\"w\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "26ae940a-9841-4e27-a1df-b83fc8a488b3",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[220]"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer.encode(\" \")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "a606c39a-6747-4cd8-bb38-e3183f80908d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[959]"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer.encode(\"ier\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "47c7268d-8fdc-4957-bc68-5be6113f45a7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'Akwirw ier'"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tokenizer.decode([33901, 86, 343, 86, 220, 959])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "29e5034a-95ed-46d8-9972-589354dc9fd4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Exercise 2.2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "4d50af16-937b-49e0-8ffd-42d30cbb41c9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import tiktoken\n",
|
||||
"import torch\n",
|
||||
"from torch.utils.data import Dataset, DataLoader\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GPTDatasetV1(Dataset):\n",
|
||||
" def __init__(self, txt, tokenizer, max_length, stride):\n",
|
||||
" self.tokenizer = tokenizer\n",
|
||||
" self.input_ids = []\n",
|
||||
" self.target_ids = []\n",
|
||||
"\n",
|
||||
" # Tokenize the entire text\n",
|
||||
" token_ids = tokenizer.encode(txt)\n",
|
||||
"\n",
|
||||
" # Use a sliding window to chunk the book into overlapping sequences of max_length\n",
|
||||
" for i in range(0, len(token_ids) - max_length, stride):\n",
|
||||
" input_chunk = token_ids[i:i + max_length]\n",
|
||||
" target_chunk = token_ids[i + 1: i + max_length + 1]\n",
|
||||
" self.input_ids.append(torch.tensor(input_chunk))\n",
|
||||
" self.target_ids.append(torch.tensor(target_chunk))\n",
|
||||
"\n",
|
||||
" def __len__(self):\n",
|
||||
" return len(self.input_ids)\n",
|
||||
"\n",
|
||||
" def __getitem__(self, idx):\n",
|
||||
" return self.input_ids[idx], self.target_ids[idx]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def create_dataloader(txt, batch_size=4, max_length=256, stride=128):\n",
|
||||
" # Initialize the tokenizer\n",
|
||||
" tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
||||
"\n",
|
||||
" # Create dataset\n",
|
||||
" dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n",
|
||||
"\n",
|
||||
" # Create dataloader\n",
|
||||
" dataloader = DataLoader(dataset, batch_size=batch_size)\n",
|
||||
"\n",
|
||||
" return dataloader\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"with open(\"the-verdict.txt\", \"r\", encoding=\"utf-8\") as f:\n",
|
||||
" raw_text = f.read()\n",
|
||||
"\n",
|
||||
"tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
||||
"encoded_text = tokenizer.encode(raw_text)\n",
|
||||
"\n",
|
||||
"vocab_size = 50257\n",
|
||||
"output_dim = 256\n",
|
||||
"token_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)\n",
|
||||
"pos_embedding_layer = torch.nn.Embedding(vocab_size, output_dim)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "0128eefa-d7c8-4f76-9851-566dfa7c3745",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"tensor([[ 40, 367],\n",
|
||||
" [2885, 1464],\n",
|
||||
" [1807, 3619],\n",
|
||||
" [ 402, 271]])"
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dataloader = create_dataloader(raw_text, batch_size=4, max_length=2, stride=2)\n",
|
||||
"\n",
|
||||
"for batch in dataloader:\n",
|
||||
" x, y = batch\n",
|
||||
" break\n",
|
||||
"\n",
|
||||
"x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "ff5c1e90-c6de-4a87-adf6-7e19f603291c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"tensor([[ 40, 367, 2885, 1464, 1807, 3619, 402, 271],\n",
|
||||
" [ 2885, 1464, 1807, 3619, 402, 271, 10899, 2138],\n",
|
||||
" [ 1807, 3619, 402, 271, 10899, 2138, 257, 7026],\n",
|
||||
" [ 402, 271, 10899, 2138, 257, 7026, 15632, 438]])"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dataloader = create_dataloader(raw_text, batch_size=4, max_length=8, stride=2)\n",
|
||||
"\n",
|
||||
"for batch in dataloader:\n",
|
||||
" x, y = batch\n",
|
||||
" break\n",
|
||||
"\n",
|
||||
"x"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user