mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-04 11:50:14 +00:00 
			
		
		
		
	refresh figures
This commit is contained in:
		
							parent
							
								
									95926535f8
								
							
						
					
					
						commit
						ce80a192cd
					
				@ -16,7 +16,7 @@
 | 
				
			|||||||
    "</font>\n",
 | 
					    "</font>\n",
 | 
				
			||||||
    "</td>\n",
 | 
					    "</td>\n",
 | 
				
			||||||
    "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | 
					    "<td style=\"vertical-align:middle; text-align:left;\">\n",
 | 
				
			||||||
    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
 | 
					    "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp?1\" width=\"100px\"></a>\n",
 | 
				
			||||||
    "</td>\n",
 | 
					    "</td>\n",
 | 
				
			||||||
    "</tr>\n",
 | 
					    "</tr>\n",
 | 
				
			||||||
    "</table>"
 | 
					    "</table>"
 | 
				
			||||||
@ -77,7 +77,7 @@
 | 
				
			|||||||
    "id": "264fca98-2f9a-4193-b435-2abfa3b4142f"
 | 
					    "id": "264fca98-2f9a-4193-b435-2abfa3b4142f"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/overview.webp\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/overview.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -121,7 +121,7 @@
 | 
				
			|||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "- The topics covered in this chapter are summarized in the figure below\n",
 | 
					    "- The topics covered in this chapter are summarized in the figure below\n",
 | 
				
			||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-1.webp?123\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-1.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -285,7 +285,7 @@
 | 
				
			|||||||
    "id": "dffa4f70-44d4-4be4-89a9-2159f4885b10"
 | 
					    "id": "dffa4f70-44d4-4be4-89a9-2159f4885b10"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/prompt-style.webp\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/prompt-style.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -482,7 +482,7 @@
 | 
				
			|||||||
    "id": "233f63bd-9755-4d07-8884-5e2e5345cf27"
 | 
					    "id": "233f63bd-9755-4d07-8884-5e2e5345cf27"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-2.webp?1234\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-2.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -709,7 +709,7 @@
 | 
				
			|||||||
    "id": "0386b6fe-3455-4e70-becd-a5a4681ba2ef"
 | 
					    "id": "0386b6fe-3455-4e70-becd-a5a4681ba2ef"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/inputs-targets.webp\" width=400px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/inputs-targets.webp?1\" width=400px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -804,7 +804,7 @@
 | 
				
			|||||||
    "id": "bd4bed33-956e-4b3f-a09c-586d8203109a"
 | 
					    "id": "bd4bed33-956e-4b3f-a09c-586d8203109a"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/ignore-index.webp\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/ignore-index.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -1058,7 +1058,7 @@
 | 
				
			|||||||
    "id": "fab8f0ed-80e8-4fd9-bf84-e5d0e0bc0a39"
 | 
					    "id": "fab8f0ed-80e8-4fd9-bf84-e5d0e0bc0a39"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/mask-instructions.webp\" width=600px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/mask-instructions.webp?1\" width=600px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -1088,7 +1088,7 @@
 | 
				
			|||||||
    "id": "9fffe390-b226-4d5c-983f-9f4da773cb82"
 | 
					    "id": "9fffe390-b226-4d5c-983f-9f4da773cb82"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-3.webp\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-3.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -1488,7 +1488,7 @@
 | 
				
			|||||||
    "id": "8d1b438f-88af-413f-96a9-f059c6c55fc4"
 | 
					    "id": "8d1b438f-88af-413f-96a9-f059c6c55fc4"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-4.webp\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-4.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -1706,7 +1706,7 @@
 | 
				
			|||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "- In this section, we finetune the model\n",
 | 
					    "- In this section, we finetune the model\n",
 | 
				
			||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-5.webp\" width=500px>\n",
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-5.webp?1\" width=500px>\n",
 | 
				
			||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "- Note that we can reuse all the loss calculation and training functions that we used in previous chapters"
 | 
					    "- Note that we can reuse all the loss calculation and training functions that we used in previous chapters"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
@ -1968,7 +1968,7 @@
 | 
				
			|||||||
    "id": "5a25cc88-1758-4dd0-b8bf-c044cbf2dd49"
 | 
					    "id": "5a25cc88-1758-4dd0-b8bf-c044cbf2dd49"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-6.webp\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-6.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -2224,7 +2224,7 @@
 | 
				
			|||||||
    "id": "805b9d30-7336-499f-abb5-4a21be3129f5"
 | 
					    "id": "805b9d30-7336-499f-abb5-4a21be3129f5"
 | 
				
			||||||
   },
 | 
					   },
 | 
				
			||||||
   "source": [
 | 
					   "source": [
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-7.webp\" width=500px>"
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/chapter-overview-7.webp?1\" width=500px>"
 | 
				
			||||||
   ]
 | 
					   ]
 | 
				
			||||||
  },
 | 
					  },
 | 
				
			||||||
  {
 | 
					  {
 | 
				
			||||||
@ -2264,7 +2264,7 @@
 | 
				
			|||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "- In general, before we can use ollama from the command line, we have to either start the ollama application or run `ollama serve` in a separate terminal\n",
 | 
					    "- In general, before we can use ollama from the command line, we have to either start the ollama application or run `ollama serve` in a separate terminal\n",
 | 
				
			||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/ollama-run.webp\" width=700px>\n",
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/ollama-run.webp?1\" width=700px>\n",
 | 
				
			||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "- With the ollama application or `ollama serve` running in a different terminal, on the command line, execute the following command to try out the 8-billion-parameter Llama 3 model (the model, which takes up 4.7 GB of storage space, will be automatically downloaded the first time you execute this command)\n",
 | 
					    "- With the ollama application or `ollama serve` running in a different terminal, on the command line, execute the following command to try out the 8-billion-parameter Llama 3 model (the model, which takes up 4.7 GB of storage space, will be automatically downloaded the first time you execute this command)\n",
 | 
				
			||||||
@ -2710,7 +2710,7 @@
 | 
				
			|||||||
    "- This marks the final chapter of this book\n",
 | 
					    "- This marks the final chapter of this book\n",
 | 
				
			||||||
    "- We covered the major steps of the LLM development cycle: implementing an LLM architecture, pretraining an LLM, and finetuning it\n",
 | 
					    "- We covered the major steps of the LLM development cycle: implementing an LLM architecture, pretraining an LLM, and finetuning it\n",
 | 
				
			||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/final-overview.webp\" width=500px>\n",
 | 
					    "<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/ch07_compressed/final-overview.webp?1\" width=500px>\n",
 | 
				
			||||||
    "\n",
 | 
					    "\n",
 | 
				
			||||||
    "- An optional step that is sometimes followed after instruction finetuning, as described in this chapter, is preference finetuning\n",
 | 
					    "- An optional step that is sometimes followed after instruction finetuning, as described in this chapter, is preference finetuning\n",
 | 
				
			||||||
    "- Preference finetuning process can be particularly useful for customizing a model to better align with specific user preferences; see the [../04_preference-tuning-with-dpo](../04_preference-tuning-with-dpo) folder if you are interested in this\n",
 | 
					    "- Preference finetuning process can be particularly useful for customizing a model to better align with specific user preferences; see the [../04_preference-tuning-with-dpo](../04_preference-tuning-with-dpo) folder if you are interested in this\n",
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user