mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-09-02 21:07:52 +00:00
Add download help message (#274)
This commit is contained in:
parent
06ed31f347
commit
d0f3b034d8
@ -5,7 +5,9 @@
|
|||||||
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import requests
|
import urllib.request
|
||||||
|
|
||||||
|
# import requests
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
return settings, params
|
return settings, params
|
||||||
|
|
||||||
|
|
||||||
|
def download_file(url, destination):
|
||||||
|
# Send a GET request to download the file
|
||||||
|
|
||||||
|
try:
|
||||||
|
with urllib.request.urlopen(url) as response:
|
||||||
|
# Get the total file size from headers, defaulting to 0 if not present
|
||||||
|
file_size = int(response.headers.get("Content-Length", 0))
|
||||||
|
|
||||||
|
# Check if file exists and has the same size
|
||||||
|
if os.path.exists(destination):
|
||||||
|
file_size_local = os.path.getsize(destination)
|
||||||
|
if file_size == file_size_local:
|
||||||
|
print(f"File already exists and is up-to-date: {destination}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Define the block size for reading the file
|
||||||
|
block_size = 1024 # 1 Kilobyte
|
||||||
|
|
||||||
|
# Initialize the progress bar with total file size
|
||||||
|
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
||||||
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||||
|
# Open the destination file in binary write mode
|
||||||
|
with open(destination, "wb") as file:
|
||||||
|
# Read the file in chunks and write to destination
|
||||||
|
while True:
|
||||||
|
chunk = response.read(block_size)
|
||||||
|
if not chunk:
|
||||||
|
break
|
||||||
|
file.write(chunk)
|
||||||
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
|
except urllib.error.HTTPError:
|
||||||
|
s = (
|
||||||
|
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
|
||||||
|
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
|
||||||
|
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
|
||||||
|
print(s)
|
||||||
|
|
||||||
|
|
||||||
|
# Alternative way using `requests`
|
||||||
|
"""
|
||||||
def download_file(url, destination):
|
def download_file(url, destination):
|
||||||
# Send a GET request to download the file in streaming mode
|
# Send a GET request to download the file in streaming mode
|
||||||
response = requests.get(url, stream=True)
|
response = requests.get(url, stream=True)
|
||||||
@ -68,6 +110,7 @@ def download_file(url, destination):
|
|||||||
for chunk in response.iter_content(block_size):
|
for chunk in response.iter_content(block_size):
|
||||||
progress_bar.update(len(chunk)) # Update progress bar
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
file.write(chunk) # Write the chunk to the file
|
file.write(chunk) # Write the chunk to the file
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||||
|
@ -44,6 +44,45 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
return settings, params
|
return settings, params
|
||||||
|
|
||||||
|
|
||||||
|
def download_file(url, destination):
|
||||||
|
# Send a GET request to download the file
|
||||||
|
|
||||||
|
try:
|
||||||
|
with urllib.request.urlopen(url) as response:
|
||||||
|
# Get the total file size from headers, defaulting to 0 if not present
|
||||||
|
file_size = int(response.headers.get("Content-Length", 0))
|
||||||
|
|
||||||
|
# Check if file exists and has the same size
|
||||||
|
if os.path.exists(destination):
|
||||||
|
file_size_local = os.path.getsize(destination)
|
||||||
|
if file_size == file_size_local:
|
||||||
|
print(f"File already exists and is up-to-date: {destination}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Define the block size for reading the file
|
||||||
|
block_size = 1024 # 1 Kilobyte
|
||||||
|
|
||||||
|
# Initialize the progress bar with total file size
|
||||||
|
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
||||||
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||||
|
# Open the destination file in binary write mode
|
||||||
|
with open(destination, "wb") as file:
|
||||||
|
# Read the file in chunks and write to destination
|
||||||
|
while True:
|
||||||
|
chunk = response.read(block_size)
|
||||||
|
if not chunk:
|
||||||
|
break
|
||||||
|
file.write(chunk)
|
||||||
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
|
except urllib.error.HTTPError:
|
||||||
|
s = (
|
||||||
|
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
|
||||||
|
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
|
||||||
|
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
|
||||||
|
print(s)
|
||||||
|
|
||||||
|
|
||||||
|
# Alternative way using `requests`
|
||||||
"""
|
"""
|
||||||
def download_file(url, destination):
|
def download_file(url, destination):
|
||||||
# Send a GET request to download the file in streaming mode
|
# Send a GET request to download the file in streaming mode
|
||||||
@ -74,36 +113,6 @@ def download_file(url, destination):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
def download_file(url, destination):
|
|
||||||
# Send a GET request to download the file
|
|
||||||
with urllib.request.urlopen(url) as response:
|
|
||||||
# Get the total file size from headers, defaulting to 0 if not present
|
|
||||||
file_size = int(response.headers.get("Content-Length", 0))
|
|
||||||
|
|
||||||
# Check if file exists and has the same size
|
|
||||||
if os.path.exists(destination):
|
|
||||||
file_size_local = os.path.getsize(destination)
|
|
||||||
if file_size == file_size_local:
|
|
||||||
print(f"File already exists and is up-to-date: {destination}")
|
|
||||||
return
|
|
||||||
|
|
||||||
# Define the block size for reading the file
|
|
||||||
block_size = 1024 # 1 Kilobyte
|
|
||||||
|
|
||||||
# Initialize the progress bar with total file size
|
|
||||||
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
|
||||||
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
|
||||||
# Open the destination file in binary write mode
|
|
||||||
with open(destination, "wb") as file:
|
|
||||||
# Read the file in chunks and write to destination
|
|
||||||
while True:
|
|
||||||
chunk = response.read(block_size)
|
|
||||||
if not chunk:
|
|
||||||
break
|
|
||||||
file.write(chunk)
|
|
||||||
progress_bar.update(len(chunk)) # Update progress bar
|
|
||||||
|
|
||||||
|
|
||||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||||
# Initialize parameters dictionary with empty blocks for each layer
|
# Initialize parameters dictionary with empty blocks for each layer
|
||||||
params = {"blocks": [{} for _ in range(settings["n_layer"])]}
|
params = {"blocks": [{} for _ in range(settings["n_layer"])]}
|
||||||
|
@ -5,7 +5,9 @@
|
|||||||
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import requests
|
import urllib.request
|
||||||
|
|
||||||
|
# import requests
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
return settings, params
|
return settings, params
|
||||||
|
|
||||||
|
|
||||||
|
def download_file(url, destination):
|
||||||
|
# Send a GET request to download the file
|
||||||
|
|
||||||
|
try:
|
||||||
|
with urllib.request.urlopen(url) as response:
|
||||||
|
# Get the total file size from headers, defaulting to 0 if not present
|
||||||
|
file_size = int(response.headers.get("Content-Length", 0))
|
||||||
|
|
||||||
|
# Check if file exists and has the same size
|
||||||
|
if os.path.exists(destination):
|
||||||
|
file_size_local = os.path.getsize(destination)
|
||||||
|
if file_size == file_size_local:
|
||||||
|
print(f"File already exists and is up-to-date: {destination}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Define the block size for reading the file
|
||||||
|
block_size = 1024 # 1 Kilobyte
|
||||||
|
|
||||||
|
# Initialize the progress bar with total file size
|
||||||
|
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
||||||
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||||
|
# Open the destination file in binary write mode
|
||||||
|
with open(destination, "wb") as file:
|
||||||
|
# Read the file in chunks and write to destination
|
||||||
|
while True:
|
||||||
|
chunk = response.read(block_size)
|
||||||
|
if not chunk:
|
||||||
|
break
|
||||||
|
file.write(chunk)
|
||||||
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
|
except urllib.error.HTTPError:
|
||||||
|
s = (
|
||||||
|
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
|
||||||
|
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
|
||||||
|
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
|
||||||
|
print(s)
|
||||||
|
|
||||||
|
|
||||||
|
# Alternative way using `requests`
|
||||||
|
"""
|
||||||
def download_file(url, destination):
|
def download_file(url, destination):
|
||||||
# Send a GET request to download the file in streaming mode
|
# Send a GET request to download the file in streaming mode
|
||||||
response = requests.get(url, stream=True)
|
response = requests.get(url, stream=True)
|
||||||
@ -68,6 +110,7 @@ def download_file(url, destination):
|
|||||||
for chunk in response.iter_content(block_size):
|
for chunk in response.iter_content(block_size):
|
||||||
progress_bar.update(len(chunk)) # Update progress bar
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
file.write(chunk) # Write the chunk to the file
|
file.write(chunk) # Write the chunk to the file
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||||
|
@ -5,7 +5,9 @@
|
|||||||
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import requests
|
import urllib.request
|
||||||
|
|
||||||
|
# import requests
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
return settings, params
|
return settings, params
|
||||||
|
|
||||||
|
|
||||||
|
def download_file(url, destination):
|
||||||
|
# Send a GET request to download the file
|
||||||
|
|
||||||
|
try:
|
||||||
|
with urllib.request.urlopen(url) as response:
|
||||||
|
# Get the total file size from headers, defaulting to 0 if not present
|
||||||
|
file_size = int(response.headers.get("Content-Length", 0))
|
||||||
|
|
||||||
|
# Check if file exists and has the same size
|
||||||
|
if os.path.exists(destination):
|
||||||
|
file_size_local = os.path.getsize(destination)
|
||||||
|
if file_size == file_size_local:
|
||||||
|
print(f"File already exists and is up-to-date: {destination}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Define the block size for reading the file
|
||||||
|
block_size = 1024 # 1 Kilobyte
|
||||||
|
|
||||||
|
# Initialize the progress bar with total file size
|
||||||
|
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
||||||
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||||
|
# Open the destination file in binary write mode
|
||||||
|
with open(destination, "wb") as file:
|
||||||
|
# Read the file in chunks and write to destination
|
||||||
|
while True:
|
||||||
|
chunk = response.read(block_size)
|
||||||
|
if not chunk:
|
||||||
|
break
|
||||||
|
file.write(chunk)
|
||||||
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
|
except urllib.error.HTTPError:
|
||||||
|
s = (
|
||||||
|
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
|
||||||
|
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
|
||||||
|
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
|
||||||
|
print(s)
|
||||||
|
|
||||||
|
|
||||||
|
# Alternative way using `requests`
|
||||||
|
"""
|
||||||
def download_file(url, destination):
|
def download_file(url, destination):
|
||||||
# Send a GET request to download the file in streaming mode
|
# Send a GET request to download the file in streaming mode
|
||||||
response = requests.get(url, stream=True)
|
response = requests.get(url, stream=True)
|
||||||
@ -68,6 +110,7 @@ def download_file(url, destination):
|
|||||||
for chunk in response.iter_content(block_size):
|
for chunk in response.iter_content(block_size):
|
||||||
progress_bar.update(len(chunk)) # Update progress bar
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
file.write(chunk) # Write the chunk to the file
|
file.write(chunk) # Write the chunk to the file
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||||
|
@ -5,7 +5,9 @@
|
|||||||
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import requests
|
import urllib.request
|
||||||
|
|
||||||
|
# import requests
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
return settings, params
|
return settings, params
|
||||||
|
|
||||||
|
|
||||||
|
def download_file(url, destination):
|
||||||
|
# Send a GET request to download the file
|
||||||
|
|
||||||
|
try:
|
||||||
|
with urllib.request.urlopen(url) as response:
|
||||||
|
# Get the total file size from headers, defaulting to 0 if not present
|
||||||
|
file_size = int(response.headers.get("Content-Length", 0))
|
||||||
|
|
||||||
|
# Check if file exists and has the same size
|
||||||
|
if os.path.exists(destination):
|
||||||
|
file_size_local = os.path.getsize(destination)
|
||||||
|
if file_size == file_size_local:
|
||||||
|
print(f"File already exists and is up-to-date: {destination}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Define the block size for reading the file
|
||||||
|
block_size = 1024 # 1 Kilobyte
|
||||||
|
|
||||||
|
# Initialize the progress bar with total file size
|
||||||
|
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
||||||
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||||
|
# Open the destination file in binary write mode
|
||||||
|
with open(destination, "wb") as file:
|
||||||
|
# Read the file in chunks and write to destination
|
||||||
|
while True:
|
||||||
|
chunk = response.read(block_size)
|
||||||
|
if not chunk:
|
||||||
|
break
|
||||||
|
file.write(chunk)
|
||||||
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
|
except urllib.error.HTTPError:
|
||||||
|
s = (
|
||||||
|
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
|
||||||
|
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
|
||||||
|
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
|
||||||
|
print(s)
|
||||||
|
|
||||||
|
|
||||||
|
# Alternative way using `requests`
|
||||||
|
"""
|
||||||
def download_file(url, destination):
|
def download_file(url, destination):
|
||||||
# Send a GET request to download the file in streaming mode
|
# Send a GET request to download the file in streaming mode
|
||||||
response = requests.get(url, stream=True)
|
response = requests.get(url, stream=True)
|
||||||
@ -68,6 +110,7 @@ def download_file(url, destination):
|
|||||||
for chunk in response.iter_content(block_size):
|
for chunk in response.iter_content(block_size):
|
||||||
progress_bar.update(len(chunk)) # Update progress bar
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
file.write(chunk) # Write the chunk to the file
|
file.write(chunk) # Write the chunk to the file
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||||
|
@ -5,7 +5,9 @@
|
|||||||
|
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import requests
|
import urllib.request
|
||||||
|
|
||||||
|
# import requests
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
@ -42,6 +44,46 @@ def download_and_load_gpt2(model_size, models_dir):
|
|||||||
return settings, params
|
return settings, params
|
||||||
|
|
||||||
|
|
||||||
|
def download_file(url, destination):
|
||||||
|
# Send a GET request to download the file
|
||||||
|
|
||||||
|
try:
|
||||||
|
with urllib.request.urlopen(url) as response:
|
||||||
|
# Get the total file size from headers, defaulting to 0 if not present
|
||||||
|
file_size = int(response.headers.get("Content-Length", 0))
|
||||||
|
|
||||||
|
# Check if file exists and has the same size
|
||||||
|
if os.path.exists(destination):
|
||||||
|
file_size_local = os.path.getsize(destination)
|
||||||
|
if file_size == file_size_local:
|
||||||
|
print(f"File already exists and is up-to-date: {destination}")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Define the block size for reading the file
|
||||||
|
block_size = 1024 # 1 Kilobyte
|
||||||
|
|
||||||
|
# Initialize the progress bar with total file size
|
||||||
|
progress_bar_description = os.path.basename(url) # Extract filename from URL
|
||||||
|
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||||
|
# Open the destination file in binary write mode
|
||||||
|
with open(destination, "wb") as file:
|
||||||
|
# Read the file in chunks and write to destination
|
||||||
|
while True:
|
||||||
|
chunk = response.read(block_size)
|
||||||
|
if not chunk:
|
||||||
|
break
|
||||||
|
file.write(chunk)
|
||||||
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
|
except urllib.error.HTTPError:
|
||||||
|
s = (
|
||||||
|
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
|
||||||
|
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
|
||||||
|
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
|
||||||
|
print(s)
|
||||||
|
|
||||||
|
|
||||||
|
# Alternative way using `requests`
|
||||||
|
"""
|
||||||
def download_file(url, destination):
|
def download_file(url, destination):
|
||||||
# Send a GET request to download the file in streaming mode
|
# Send a GET request to download the file in streaming mode
|
||||||
response = requests.get(url, stream=True)
|
response = requests.get(url, stream=True)
|
||||||
@ -68,6 +110,7 @@ def download_file(url, destination):
|
|||||||
for chunk in response.iter_content(block_size):
|
for chunk in response.iter_content(block_size):
|
||||||
progress_bar.update(len(chunk)) # Update progress bar
|
progress_bar.update(len(chunk)) # Update progress bar
|
||||||
file.write(chunk) # Write the chunk to the file
|
file.write(chunk) # Write the chunk to the file
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||||
|
Loading…
x
Reference in New Issue
Block a user