Add torchrun bonus code (#524)

This commit is contained in:
Sebastian Raschka 2025-02-11 17:01:09 -06:00 committed by GitHub
parent 83b47adf0d
commit d16863c7db
4 changed files with 268 additions and 8 deletions

View File

@ -0,0 +1,220 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
# Appendix A: Introduction to PyTorch (Part 3)
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
# NEW imports:
import os
import platform
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
# NEW: function to initialize a distributed process group (1 process / GPU)
# this allows communication among processes
def ddp_setup(rank, world_size):
"""
Arguments:
rank: a unique process ID
world_size: total number of processes in the group
"""
# Only set MASTER_ADDR and MASTER_PORT if not already defined by torchrun
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = "localhost"
if "MASTER_PORT" not in os.environ:
os.environ["MASTER_PORT"] = "12345"
# initialize process group
if platform.system() == "Windows":
# Disable libuv because PyTorch for Windows isn't built with support
os.environ["USE_LIBUV"] = "0"
# Windows users may have to use "gloo" instead of "nccl" as backend
# gloo: Facebook Collective Communication Library
init_process_group(backend="gloo", rank=rank, world_size=world_size)
else:
# nccl: NVIDIA Collective Communication Library
init_process_group(backend="nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
class ToyDataset(Dataset):
def __init__(self, X, y):
self.features = X
self.labels = y
def __getitem__(self, index):
one_x = self.features[index]
one_y = self.labels[index]
return one_x, one_y
def __len__(self):
return self.labels.shape[0]
class NeuralNetwork(torch.nn.Module):
def __init__(self, num_inputs, num_outputs):
super().__init__()
self.layers = torch.nn.Sequential(
# 1st hidden layer
torch.nn.Linear(num_inputs, 30),
torch.nn.ReLU(),
# 2nd hidden layer
torch.nn.Linear(30, 20),
torch.nn.ReLU(),
# output layer
torch.nn.Linear(20, num_outputs),
)
def forward(self, x):
logits = self.layers(x)
return logits
def prepare_dataset():
X_train = torch.tensor([
[-1.2, 3.1],
[-0.9, 2.9],
[-0.5, 2.6],
[2.3, -1.1],
[2.7, -1.5]
])
y_train = torch.tensor([0, 0, 0, 1, 1])
X_test = torch.tensor([
[-0.8, 2.8],
[2.6, -1.6],
])
y_test = torch.tensor([0, 1])
# Uncomment these lines to increase the dataset size to run this script on up to 8 GPUs:
# factor = 4
# X_train = torch.cat([X_train + torch.randn_like(X_train) * 0.1 for _ in range(factor)])
# y_train = y_train.repeat(factor)
# X_test = torch.cat([X_test + torch.randn_like(X_test) * 0.1 for _ in range(factor)])
# y_test = y_test.repeat(factor)
train_ds = ToyDataset(X_train, y_train)
test_ds = ToyDataset(X_test, y_test)
train_loader = DataLoader(
dataset=train_ds,
batch_size=2,
shuffle=False, # NEW: False because of DistributedSampler below
pin_memory=True,
drop_last=True,
# NEW: chunk batches across GPUs without overlapping samples:
sampler=DistributedSampler(train_ds) # NEW
)
test_loader = DataLoader(
dataset=test_ds,
batch_size=2,
shuffle=False,
)
return train_loader, test_loader
# NEW: wrapper
def main(rank, world_size, num_epochs):
ddp_setup(rank, world_size) # NEW: initialize process groups
train_loader, test_loader = prepare_dataset()
model = NeuralNetwork(num_inputs=2, num_outputs=2)
model.to(rank)
optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
model = DDP(model, device_ids=[rank]) # NEW: wrap model with DDP
# the core model is now accessible as model.module
for epoch in range(num_epochs):
# NEW: Set sampler to ensure each epoch has a different shuffle order
train_loader.sampler.set_epoch(epoch)
model.train()
for features, labels in train_loader:
features, labels = features.to(rank), labels.to(rank) # New: use rank
logits = model(features)
loss = F.cross_entropy(logits, labels) # Loss function
optimizer.zero_grad()
loss.backward()
optimizer.step()
# LOGGING
print(f"[GPU{rank}] Epoch: {epoch+1:03d}/{num_epochs:03d}"
f" | Batchsize {labels.shape[0]:03d}"
f" | Train/Val Loss: {loss:.2f}")
model.eval()
try:
train_acc = compute_accuracy(model, train_loader, device=rank)
print(f"[GPU{rank}] Training accuracy", train_acc)
test_acc = compute_accuracy(model, test_loader, device=rank)
print(f"[GPU{rank}] Test accuracy", test_acc)
####################################################
# NEW (not in the book):
except ZeroDivisionError as e:
raise ZeroDivisionError(
f"{e}\n\nThis script is designed for 2 GPUs. You can run it as:\n"
"torchrun --nproc_per_node=2 DDP-script-torchrun.py\n"
f"Or, to run it on {torch.cuda.device_count()} GPUs, uncomment the code on lines 103 to 107."
)
####################################################
destroy_process_group() # NEW: cleanly exit distributed mode
def compute_accuracy(model, dataloader, device):
model = model.eval()
correct = 0.0
total_examples = 0
for idx, (features, labels) in enumerate(dataloader):
features, labels = features.to(device), labels.to(device)
with torch.no_grad():
logits = model(features)
predictions = torch.argmax(logits, dim=1)
compare = labels == predictions
correct += torch.sum(compare)
total_examples += len(compare)
return (correct / total_examples).item()
if __name__ == "__main__":
# NEW: Use environment variables set by torchrun if available, otherwise default to single-process.
if "WORLD_SIZE" in os.environ:
world_size = int(os.environ["WORLD_SIZE"])
else:
world_size = 1
if "LOCAL_RANK" in os.environ:
rank = int(os.environ["LOCAL_RANK"])
elif "RANK" in os.environ:
rank = int(os.environ["RANK"])
else:
rank = 0
# Only print on rank 0 to avoid duplicate prints from each GPU process
if rank == 0:
print("PyTorch version:", torch.__version__)
print("CUDA available:", torch.cuda.is_available())
print("Number of GPUs available:", torch.cuda.device_count())
torch.manual_seed(123)
num_epochs = 3
main(rank, world_size, num_epochs)

View File

@ -31,12 +31,11 @@ def ddp_setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
# any free port on the machine
os.environ["MASTER_PORT"] = "12345"
if platform.system() == "Windows":
# Disable libuv because PyTorch for Windows isn't built with support
os.environ["USE_LIBUV"] = "0"
# initialize process group
if platform.system() == "Windows":
# Disable libuv because PyTorch for Windows isn't built with support
os.environ["USE_LIBUV"] = "0"
# Windows users may have to use "gloo" instead of "nccl" as backend
# gloo: Facebook Collective Communication Library
init_process_group(backend="gloo", rank=rank, world_size=world_size)
@ -99,6 +98,13 @@ def prepare_dataset():
])
y_test = torch.tensor([0, 1])
# Uncomment these lines to increase the dataset size to run this script on up to 8 GPUs:
# factor = 4
# X_train = torch.cat([X_train + torch.randn_like(X_train) * 0.1 for _ in range(factor)])
# y_train = y_train.repeat(factor)
# X_test = torch.cat([X_test + torch.randn_like(X_test) * 0.1 for _ in range(factor)])
# y_test = y_test.repeat(factor)
train_ds = ToyDataset(X_train, y_train)
test_ds = ToyDataset(X_test, y_test)
@ -153,10 +159,22 @@ def main(rank, world_size, num_epochs):
f" | Train/Val Loss: {loss:.2f}")
model.eval()
train_acc = compute_accuracy(model, train_loader, device=rank)
print(f"[GPU{rank}] Training accuracy", train_acc)
test_acc = compute_accuracy(model, test_loader, device=rank)
print(f"[GPU{rank}] Test accuracy", test_acc)
try:
train_acc = compute_accuracy(model, train_loader, device=rank)
print(f"[GPU{rank}] Training accuracy", train_acc)
test_acc = compute_accuracy(model, test_loader, device=rank)
print(f"[GPU{rank}] Test accuracy", test_acc)
####################################################
# NEW (not in the book):
except ZeroDivisionError as e:
raise ZeroDivisionError(
f"{e}\n\nThis script is designed for 2 GPUs. You can run it as:\n"
"CUDA_VISIBLE_DEVICES=0,1 python DDP-script.py\n"
f"Or, to run it on {torch.cuda.device_count()} GPUs, uncomment the code on lines 103 to 107."
)
####################################################
destroy_process_group() # NEW: cleanly exit distributed mode
@ -184,7 +202,6 @@ if __name__ == "__main__":
print("PyTorch version:", torch.__version__)
print("CUDA available:", torch.cuda.is_available())
print("Number of GPUs available:", torch.cuda.device_count())
torch.manual_seed(123)
# NEW: spawn new processes

View File

@ -0,0 +1,12 @@
# Appendix A: Introduction to PyTorch
### Main Chapter Code
- [code-part1.ipynb](code-part1.ipynb) contains all the section A.1 to A.8 code as it appears in the chapter
- [code-part2.ipynb](code-part2.ipynb) contains all the section A.9 GPU code as it appears in the chapter
- [DDP-script.py](DDP-script.py) contains the script to demonstrate multi-GPU usage (note that Jupyter Notebooks only support single GPUs, so this is a script, not a notebook). You can run it as `python DDP-script.py`. If your machine has more than 2 GPUs, run it as `CUDA_VISIBLE_DEVIVES=0,1 python DDP-script.py`.
- [exercise-solutions.ipynb](exercise-solutions.ipynb) contains the exercise solutions for this chapter
### Optional Code
- [DDP-script-torchrun.py](DDP-script-torchrun.py) is an optional version of the `DDP-script.py` script that runs via the PyTorch `torchrun` command instead of spawning and managing multiple processes ourselves via `multiprocessing.spawn`. The `torchrun` command has the advantage of automatically handling distributed initialization, including multi-node coordination, which slightly simplifies the setup process. You can use this script via `torchrun --nproc_per_node=2 DDP-script-torchrun.py`

11
appendix-A/README.md Normal file
View File

@ -0,0 +1,11 @@
# Appendix A: Introduction to PyTorch
 
## Main Chapter Code
- [01_main-chapter-code](01_main-chapter-code) contains the main chapter code
 
## Bonus Materials
- [02_setup-recommendations](02_setup-recommendations) contains Python installation and setup recommendations.