diff --git a/README.md b/README.md
index 4dad2bb..1d7b333 100644
--- a/README.md
+++ b/README.md
@@ -113,7 +113,7 @@ Several folders contain optional materials as a bonus for interested readers:
- **Chapter 4: Implementing a GPT model from scratch**
- [FLOPS Analysis](ch04/02_performance-analysis/flops-analysis.ipynb)
- **Chapter 5: Pretraining on unlabeled data:**
- - [Alternative Weight Loading from Hugging Face Model Hub using Transformers](ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb)
+ - [Alternative Weight Loading Methods](ch05/02_alternative_weight_loading/)
- [Pretraining GPT on the Project Gutenberg Dataset](ch05/03_bonus_pretraining_on_gutenberg)
- [Adding Bells and Whistles to the Training Loop](ch05/04_learning_rate_schedulers)
- [Optimizing Hyperparameters for Pretraining](ch05/05_bonus_hparam_tuning)
diff --git a/ch05/01_main-chapter-code/ch05.ipynb b/ch05/01_main-chapter-code/ch05.ipynb
index ed87065..672af75 100644
--- a/ch05/01_main-chapter-code/ch05.ipynb
+++ b/ch05/01_main-chapter-code/ch05.ipynb
@@ -2133,20 +2133,53 @@
"id": "127ddbdb-3878-4669-9a39-d231fbdfb834",
"metadata": {},
"source": [
- "\n",
- " \n",
- " - For an alternative way to load the weights from the Hugging Face Hub, see ../02_alternative_weight_loading
\n",
- " \n",
- " - This is useful if:
\n",
- " \n",
- " - the weights are temporarily unavailable
\n",
- " - a company VPN only permits downloads from the Hugging Face Hub but not from the OpenAI CDN, for example
\n",
- " - you are having trouble with the TensorFlow installation (the original weights are stored in TensorFlow files)
\n",
- "
\n",
- "
\n",
- " - The ../02_alternative_weight_loading code notebooks are replacements for the remainder of this section 5.5
\n",
- "
\n",
- "\n"
+ "---\n",
+ "\n",
+ "---\n",
+ "\n",
+ "\n",
+ "⚠️ **Note: Some users may encounter issues in this section due to TensorFlow compatibility problems, particularly on certain Windows systems. TensorFlow is required here only to load the original OpenAI GPT-2 weight files, which we then convert to PyTorch.\n",
+ "If you're running into TensorFlow-related issues, you can use the alternative code below instead of the remaining code in this section.\n",
+ "This alternative is based on pre-converted PyTorch weights, created using the same conversion process described in the previous section. For details, refer to the notebook:\n",
+ "[../02_alternative_weight_loading/weight-loading-pytorch.ipynb](../02_alternative_weight_loading/weight-loading-pytorch.ipynb) notebook.**\n",
+ "\n",
+ "```python\n",
+ "file_name = \"gpt2-small-124M.pth\"\n",
+ "# file_name = \"gpt2-medium-355M.pth\"\n",
+ "# file_name = \"gpt2-large-774M.pth\"\n",
+ "# file_name = \"gpt2-xl-1558M.pth\"\n",
+ "\n",
+ "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n",
+ "\n",
+ "if not os.path.exists(file_name):\n",
+ " urllib.request.urlretrieve(url, file_name)\n",
+ " print(f\"Downloaded to {file_name}\")\n",
+ "\n",
+ "gpt = GPTModel(BASE_CONFIG)\n",
+ "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n",
+ "gpt.eval()\n",
+ "\n",
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
+ "gpt.to(device);\n",
+ "\n",
+ "\n",
+ "torch.manual_seed(123)\n",
+ "\n",
+ "token_ids = generate(\n",
+ " model=gpt,\n",
+ " idx=text_to_token_ids(\"Every effort moves you\", tokenizer).to(device),\n",
+ " max_new_tokens=25,\n",
+ " context_size=NEW_CONFIG[\"context_length\"],\n",
+ " top_k=50,\n",
+ " temperature=1.5\n",
+ ")\n",
+ "\n",
+ "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))\n",
+ "```\n",
+ "\n",
+ "---\n",
+ "\n",
+ "---"
]
},
{
@@ -2197,7 +2230,10 @@
"outputs": [],
"source": [
"# Relative import from the gpt_download.py contained in this folder\n",
- "from gpt_download import download_and_load_gpt2"
+ "\n",
+ "from gpt_download import download_and_load_gpt2\n",
+ "# Alternatively:\n",
+ "# from llms_from_scratch.ch05 import download_and_load_gpt2"
]
},
{
diff --git a/ch05/02_alternative_weight_loading/README.md b/ch05/02_alternative_weight_loading/README.md
index 7eb4e7b..1d251d3 100644
--- a/ch05/02_alternative_weight_loading/README.md
+++ b/ch05/02_alternative_weight_loading/README.md
@@ -2,6 +2,8 @@
This folder contains alternative weight loading strategies in case the weights become unavailable from OpenAI.
+- [weight-loading-pytorch.ipynb](weight-loading-pytorch.ipynb): (Recommended) contains code to load the weights from PyTorch state dicts that I created by converting the original TensorFlow weights
+
- [weight-loading-hf-transformers.ipynb](weight-loading-hf-transformers.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `transformers` library
- [weight-loading-hf-safetensors.ipynb](weight-loading-hf-safetensors.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `safetensors` library directly (skipping the instantiation of a Hugging Face transformer model)
\ No newline at end of file
diff --git a/ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb b/ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb
new file mode 100644
index 0000000..7081b8f
--- /dev/null
+++ b/ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb
@@ -0,0 +1,356 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "6d6bc54f-2b16-4b0f-be69-957eed5d112f",
+ "metadata": {},
+ "source": [
+ "
\n",
+ "\n",
+ "\n",
+ "\n",
+ "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka \n",
+ " Code repository: https://github.com/rasbt/LLMs-from-scratch\n",
+ "\n",
+ " | \n",
+ "\n",
+ " \n",
+ " | \n",
+ "
\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "72953590-5363-4398-85ce-54bde07f3d8a",
+ "metadata": {},
+ "source": [
+ "# Bonus Code for Chapter 5"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1a4ab5ee-e7b9-45d3-a82b-a12bcfc0945a",
+ "metadata": {},
+ "source": [
+ "## Alternative Weight Loading from PyTorch state dicts"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b2feea87-49f0-48b9-b925-b8f0dda4096f",
+ "metadata": {},
+ "source": [
+ "- In the main chapter, we loaded the GPT model weights directly from OpenAI\n",
+ "- This notebook provides alternative weight loading code to load the model weights from PyTorch state dict files that I created from the original TensorFlow files and uploaded to the [Hugging Face Model Hub](https://huggingface.co/docs/hub/en/models-the-hub) at [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch)\n",
+ "- This is conceptually the same as loading weights of a PyTorch model from via the state-dict method described in chapter 5:\n",
+ "\n",
+ "```python\n",
+ "state_dict = torch.load(\"model_state_dict.pth\")\n",
+ "model.load_state_dict(state_dict) \n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e3f9fbb2-3e39-41ee-8a08-58ba0434a8f3",
+ "metadata": {},
+ "source": [
+ "### Choose model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "b0467eff-b43c-4a38-93e8-5ed87a5fc2b1",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "torch version: 2.6.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "from importlib.metadata import version\n",
+ "\n",
+ "pkgs = [\"torch\"]\n",
+ "for p in pkgs:\n",
+ " print(f\"{p} version: {version(p)}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "9ea9b1bc-7881-46ad-9555-27a9cf23faa7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "BASE_CONFIG = {\n",
+ " \"vocab_size\": 50257, # Vocabulary size\n",
+ " \"context_length\": 1024, # Context length\n",
+ " \"drop_rate\": 0.0, # Dropout rate\n",
+ " \"qkv_bias\": True # Query-key-value bias\n",
+ "}\n",
+ "\n",
+ "model_configs = {\n",
+ " \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
+ " \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
+ " \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
+ " \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
+ "}\n",
+ "\n",
+ "\n",
+ "CHOOSE_MODEL = \"gpt2-small (124M)\"\n",
+ "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d78fc2b0-ba27-4aff-8aa3-bc6e04fca69d",
+ "metadata": {},
+ "source": [
+ "### Download file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "ca224672-a0f7-4b39-9bc9-19ddde69487b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "file_name = \"gpt2-small-124M.pth\"\n",
+ "# file_name = \"gpt2-medium-355M.pth\"\n",
+ "# file_name = \"gpt2-large-774M.pth\"\n",
+ "# file_name = \"gpt2-xl-1558M.pth\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "e7b22375-6fac-4e90-9063-daa4de86c778",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloaded to gpt2-small-124M.pth\n"
+ ]
+ }
+ ],
+ "source": [
+ "import os\n",
+ "import urllib.request\n",
+ "\n",
+ "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n",
+ "\n",
+ "if not os.path.exists(file_name):\n",
+ " urllib.request.urlretrieve(url, file_name)\n",
+ " print(f\"Downloaded to {file_name}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e61f0990-74cf-4b6d-85e5-4c7d0554db32",
+ "metadata": {},
+ "source": [
+ "### Load weights"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "cda44d37-92c0-4c19-a70a-15711513afce",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "from llms_from_scratch.ch04 import GPTModel\n",
+ "# For llms_from_scratch installation instructions, see:\n",
+ "# https://github.com/rasbt/LLMs-from-scratch/tree/main/pkg\n",
+ "\n",
+ "\n",
+ "gpt = GPTModel(BASE_CONFIG)\n",
+ "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n",
+ "gpt.eval()\n",
+ "\n",
+ "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
+ "gpt.to(device);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e0297fc4-11dc-4093-922f-dcaf85a75344",
+ "metadata": {},
+ "source": [
+ "### Generate text"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "4ddd0d51-3ade-4890-9bab-d63f141d095f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output text:\n",
+ " Every effort moves forward, but it's not enough.\n",
+ "\n",
+ "\"I'm not going to sit here and say, 'I'm not going to do this,'\n"
+ ]
+ }
+ ],
+ "source": [
+ "import tiktoken\n",
+ "from llms_from_scratch.ch05 import generate, text_to_token_ids, token_ids_to_text\n",
+ "\n",
+ "\n",
+ "torch.manual_seed(123)\n",
+ "\n",
+ "tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
+ "\n",
+ "token_ids = generate(\n",
+ " model=gpt.to(device),\n",
+ " idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n",
+ " max_new_tokens=30,\n",
+ " context_size=BASE_CONFIG[\"context_length\"],\n",
+ " top_k=1,\n",
+ " temperature=1.0\n",
+ ")\n",
+ "\n",
+ "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "aa4a7912-ae51-4786-8ef4-42bd53682932",
+ "metadata": {},
+ "source": [
+ "## Alternative safetensors file"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2f774001-9cda-4b1f-88c5-ef99786a612b",
+ "metadata": {},
+ "source": [
+ "- In addition, the [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch) repository contains so-called `.safetensors` versions of the state dicts\n",
+ "- The appeal of `.safetensors` files lies in their secure design, as they only store tensor data and avoid the execution of potentially malicious code during loading\n",
+ "- In newer versions of PyTorch (e.g., 2.0 and newer), a `weights_only=True` argument can be used with `torch.load` (e.g., `torch.load(\"model_state_dict.pth\", weights_only=True)`) to improve safety by skipping the execution of code and loading only the weights (this is now enabled by default in PyTorch 2.6 and newer); so in that case loading the weights from the state dict files should not be a concern (anymore)\n",
+ "- However, the code block below briefly shows how to load the model from these `.safetensor` files"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "c0a4fd86-4119-4a94-ae5e-13fb60d198bc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "file_name = \"gpt2-small-124M.safetensors\"\n",
+ "# file_name = \"gpt2-medium-355M.safetensors\"\n",
+ "# file_name = \"gpt2-large-774M.safetensors\"\n",
+ "# file_name = \"gpt2-xl-1558M.safetensors\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "20f96c2e-3469-47fb-bad3-e9173a1f1ba3",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloaded to gpt2-small-124M.safetensors\n"
+ ]
+ }
+ ],
+ "source": [
+ "import os\n",
+ "import urllib.request\n",
+ "\n",
+ "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n",
+ "\n",
+ "if not os.path.exists(file_name):\n",
+ " urllib.request.urlretrieve(url, file_name)\n",
+ " print(f\"Downloaded to {file_name}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "d16a69b3-9bb4-42f8-8e4f-cc62a1a1a083",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load file\n",
+ "\n",
+ "from safetensors.torch import load_file\n",
+ "\n",
+ "gpt = GPTModel(BASE_CONFIG)\n",
+ "gpt.load_state_dict(load_file(file_name))\n",
+ "gpt.eval();"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "352e57f7-8d82-4c12-900c-03e41bc9de58",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Output text:\n",
+ " Every effort moves forward, but it's not enough.\n",
+ "\n",
+ "\"I'm not going to sit here and say, 'I'm not going to do this,'\n"
+ ]
+ }
+ ],
+ "source": [
+ "token_ids = generate(\n",
+ " model=gpt.to(device),\n",
+ " idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n",
+ " max_new_tokens=30,\n",
+ " context_size=BASE_CONFIG[\"context_length\"],\n",
+ " top_k=1,\n",
+ " temperature=1.0\n",
+ ")\n",
+ "\n",
+ "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.16"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/pkg/llms_from_scratch/README.md b/pkg/llms_from_scratch/README.md
index 2cffbec..355d967 100644
--- a/pkg/llms_from_scratch/README.md
+++ b/pkg/llms_from_scratch/README.md
@@ -79,7 +79,8 @@ from llms_from_scratch.ch05 import (
token_ids_to_text,
calc_loss_batch,
calc_loss_loader,
- plot_losses
+ plot_losses,
+ download_and_load_gpt2
)
from llms_from_scratch.ch06 import (
diff --git a/pkg/llms_from_scratch/ch05.py b/pkg/llms_from_scratch/ch05.py
index 39d1a6b..f0ef5d7 100644
--- a/pkg/llms_from_scratch/ch05.py
+++ b/pkg/llms_from_scratch/ch05.py
@@ -4,10 +4,16 @@
# Code: https://github.com/rasbt/LLMs-from-scratch
from .ch04 import generate_text_simple
+
+import json
+import os
+import urllib.request
+
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import torch
+from tqdm import tqdm
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
@@ -231,3 +237,119 @@ def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
fig.tight_layout() # Adjust layout to make room
plt.savefig("loss-plot.pdf")
plt.show()
+
+
+def download_and_load_gpt2(model_size, models_dir):
+ import tensorflow as tf
+
+ # Validate model size
+ allowed_sizes = ("124M", "355M", "774M", "1558M")
+ if model_size not in allowed_sizes:
+ raise ValueError(f"Model size not in {allowed_sizes}")
+
+ # Define paths
+ model_dir = os.path.join(models_dir, model_size)
+ base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
+ backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
+ filenames = [
+ "checkpoint", "encoder.json", "hparams.json",
+ "model.ckpt.data-00000-of-00001", "model.ckpt.index",
+ "model.ckpt.meta", "vocab.bpe"
+ ]
+
+ # Download files
+ os.makedirs(model_dir, exist_ok=True)
+ for filename in filenames:
+ file_url = os.path.join(base_url, model_size, filename)
+ backup_url = os.path.join(backup_base_url, model_size, filename)
+ file_path = os.path.join(model_dir, filename)
+ download_file(file_url, file_path, backup_url)
+
+ # Load settings and params
+ tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
+ settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
+ params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
+
+ return settings, params
+
+
+def download_file(url, destination, backup_url=None):
+ def _attempt_download(download_url):
+ with urllib.request.urlopen(download_url) as response:
+ # Get the total file size from headers, defaulting to 0 if not present
+ file_size = int(response.headers.get("Content-Length", 0))
+
+ # Check if file exists and has the same size
+ if os.path.exists(destination):
+ file_size_local = os.path.getsize(destination)
+ if file_size == file_size_local:
+ print(f"File already exists and is up-to-date: {destination}")
+ return True # Indicate success without re-downloading
+
+ block_size = 1024 # 1 Kilobyte
+
+ # Initialize the progress bar with total file size
+ progress_bar_description = os.path.basename(download_url)
+ with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
+ with open(destination, "wb") as file:
+ while True:
+ chunk = response.read(block_size)
+ if not chunk:
+ break
+ file.write(chunk)
+ progress_bar.update(len(chunk))
+ return True
+
+ try:
+ if _attempt_download(url):
+ return
+ except (urllib.error.HTTPError, urllib.error.URLError):
+ if backup_url is not None:
+ print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
+ try:
+ if _attempt_download(backup_url):
+ return
+ except urllib.error.HTTPError:
+ pass
+
+ # If we reach here, both attempts have failed
+ error_message = (
+ f"Failed to download from both primary URL ({url})"
+ f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
+ "\nCheck your internet connection or the file availability.\n"
+ "For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
+ )
+ print(error_message)
+ except Exception as e:
+ print(f"An unexpected error occurred: {e}")
+
+
+def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
+ import tensorflow as tf
+
+ # Initialize parameters dictionary with empty blocks for each layer
+ params = {"blocks": [{} for _ in range(settings["n_layer"])]}
+
+ # Iterate over each variable in the checkpoint
+ for name, _ in tf.train.list_variables(ckpt_path):
+ # Load the variable and remove singleton dimensions
+ variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
+
+ # Process the variable name to extract relevant parts
+ variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix
+
+ # Identify the target dictionary for the variable
+ target_dict = params
+ if variable_name_parts[0].startswith("h"):
+ layer_number = int(variable_name_parts[0][1:])
+ target_dict = params["blocks"][layer_number]
+
+ # Recursively access or create nested dictionaries
+ for key in variable_name_parts[1:-1]:
+ target_dict = target_dict.setdefault(key, {})
+
+ # Assign the variable array to the last key
+ last_key = variable_name_parts[-1]
+ target_dict[last_key] = variable_array
+
+ return params
diff --git a/pyproject.toml b/pyproject.toml
index 690dc24..d1bda8f 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "llms-from-scratch"
-version = "1.0.1"
+version = "1.0.2"
description = "Implement a ChatGPT-like LLM in PyTorch from scratch, step by step"
readme = "README.md"
requires-python = ">=3.10"