From e55e3e88e164378e52b7819e04ef441e27f692f5 Mon Sep 17 00:00:00 2001 From: Sebastian Raschka Date: Thu, 27 Mar 2025 20:10:23 -0500 Subject: [PATCH] Alt weight loading code via PyTorch (#585) * Alt weight loading code via PyTorch * commit additional files --- README.md | 2 +- ch05/01_main-chapter-code/ch05.ipynb | 66 +++- ch05/02_alternative_weight_loading/README.md | 2 + .../weight-loading-pytorch.ipynb | 356 ++++++++++++++++++ pkg/llms_from_scratch/README.md | 3 +- pkg/llms_from_scratch/ch05.py | 122 ++++++ pyproject.toml | 2 +- 7 files changed, 535 insertions(+), 18 deletions(-) create mode 100644 ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb diff --git a/README.md b/README.md index 4dad2bb..1d7b333 100644 --- a/README.md +++ b/README.md @@ -113,7 +113,7 @@ Several folders contain optional materials as a bonus for interested readers: - **Chapter 4: Implementing a GPT model from scratch** - [FLOPS Analysis](ch04/02_performance-analysis/flops-analysis.ipynb) - **Chapter 5: Pretraining on unlabeled data:** - - [Alternative Weight Loading from Hugging Face Model Hub using Transformers](ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb) + - [Alternative Weight Loading Methods](ch05/02_alternative_weight_loading/) - [Pretraining GPT on the Project Gutenberg Dataset](ch05/03_bonus_pretraining_on_gutenberg) - [Adding Bells and Whistles to the Training Loop](ch05/04_learning_rate_schedulers) - [Optimizing Hyperparameters for Pretraining](ch05/05_bonus_hparam_tuning) diff --git a/ch05/01_main-chapter-code/ch05.ipynb b/ch05/01_main-chapter-code/ch05.ipynb index ed87065..672af75 100644 --- a/ch05/01_main-chapter-code/ch05.ipynb +++ b/ch05/01_main-chapter-code/ch05.ipynb @@ -2133,20 +2133,53 @@ "id": "127ddbdb-3878-4669-9a39-d231fbdfb834", "metadata": {}, "source": [ - "\n", - " \n", - "\n" + "---\n", + "\n", + "---\n", + "\n", + "\n", + "⚠️ **Note: Some users may encounter issues in this section due to TensorFlow compatibility problems, particularly on certain Windows systems. TensorFlow is required here only to load the original OpenAI GPT-2 weight files, which we then convert to PyTorch.\n", + "If you're running into TensorFlow-related issues, you can use the alternative code below instead of the remaining code in this section.\n", + "This alternative is based on pre-converted PyTorch weights, created using the same conversion process described in the previous section. For details, refer to the notebook:\n", + "[../02_alternative_weight_loading/weight-loading-pytorch.ipynb](../02_alternative_weight_loading/weight-loading-pytorch.ipynb) notebook.**\n", + "\n", + "```python\n", + "file_name = \"gpt2-small-124M.pth\"\n", + "# file_name = \"gpt2-medium-355M.pth\"\n", + "# file_name = \"gpt2-large-774M.pth\"\n", + "# file_name = \"gpt2-xl-1558M.pth\"\n", + "\n", + "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n", + "\n", + "if not os.path.exists(file_name):\n", + " urllib.request.urlretrieve(url, file_name)\n", + " print(f\"Downloaded to {file_name}\")\n", + "\n", + "gpt = GPTModel(BASE_CONFIG)\n", + "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n", + "gpt.eval()\n", + "\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "gpt.to(device);\n", + "\n", + "\n", + "torch.manual_seed(123)\n", + "\n", + "token_ids = generate(\n", + " model=gpt,\n", + " idx=text_to_token_ids(\"Every effort moves you\", tokenizer).to(device),\n", + " max_new_tokens=25,\n", + " context_size=NEW_CONFIG[\"context_length\"],\n", + " top_k=50,\n", + " temperature=1.5\n", + ")\n", + "\n", + "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))\n", + "```\n", + "\n", + "---\n", + "\n", + "---" ] }, { @@ -2197,7 +2230,10 @@ "outputs": [], "source": [ "# Relative import from the gpt_download.py contained in this folder\n", - "from gpt_download import download_and_load_gpt2" + "\n", + "from gpt_download import download_and_load_gpt2\n", + "# Alternatively:\n", + "# from llms_from_scratch.ch05 import download_and_load_gpt2" ] }, { diff --git a/ch05/02_alternative_weight_loading/README.md b/ch05/02_alternative_weight_loading/README.md index 7eb4e7b..1d251d3 100644 --- a/ch05/02_alternative_weight_loading/README.md +++ b/ch05/02_alternative_weight_loading/README.md @@ -2,6 +2,8 @@ This folder contains alternative weight loading strategies in case the weights become unavailable from OpenAI. +- [weight-loading-pytorch.ipynb](weight-loading-pytorch.ipynb): (Recommended) contains code to load the weights from PyTorch state dicts that I created by converting the original TensorFlow weights + - [weight-loading-hf-transformers.ipynb](weight-loading-hf-transformers.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `transformers` library - [weight-loading-hf-safetensors.ipynb](weight-loading-hf-safetensors.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `safetensors` library directly (skipping the instantiation of a Hugging Face transformer model) \ No newline at end of file diff --git a/ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb b/ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb new file mode 100644 index 0000000..7081b8f --- /dev/null +++ b/ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb @@ -0,0 +1,356 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6d6bc54f-2b16-4b0f-be69-957eed5d112f", + "metadata": {}, + "source": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + "\n", + "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka
\n", + "
Code repository: https://github.com/rasbt/LLMs-from-scratch\n", + "
\n", + "
\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "72953590-5363-4398-85ce-54bde07f3d8a", + "metadata": {}, + "source": [ + "# Bonus Code for Chapter 5" + ] + }, + { + "cell_type": "markdown", + "id": "1a4ab5ee-e7b9-45d3-a82b-a12bcfc0945a", + "metadata": {}, + "source": [ + "## Alternative Weight Loading from PyTorch state dicts" + ] + }, + { + "cell_type": "markdown", + "id": "b2feea87-49f0-48b9-b925-b8f0dda4096f", + "metadata": {}, + "source": [ + "- In the main chapter, we loaded the GPT model weights directly from OpenAI\n", + "- This notebook provides alternative weight loading code to load the model weights from PyTorch state dict files that I created from the original TensorFlow files and uploaded to the [Hugging Face Model Hub](https://huggingface.co/docs/hub/en/models-the-hub) at [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch)\n", + "- This is conceptually the same as loading weights of a PyTorch model from via the state-dict method described in chapter 5:\n", + "\n", + "```python\n", + "state_dict = torch.load(\"model_state_dict.pth\")\n", + "model.load_state_dict(state_dict) \n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "e3f9fbb2-3e39-41ee-8a08-58ba0434a8f3", + "metadata": {}, + "source": [ + "### Choose model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b0467eff-b43c-4a38-93e8-5ed87a5fc2b1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch version: 2.6.0\n" + ] + } + ], + "source": [ + "from importlib.metadata import version\n", + "\n", + "pkgs = [\"torch\"]\n", + "for p in pkgs:\n", + " print(f\"{p} version: {version(p)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "9ea9b1bc-7881-46ad-9555-27a9cf23faa7", + "metadata": {}, + "outputs": [], + "source": [ + "BASE_CONFIG = {\n", + " \"vocab_size\": 50257, # Vocabulary size\n", + " \"context_length\": 1024, # Context length\n", + " \"drop_rate\": 0.0, # Dropout rate\n", + " \"qkv_bias\": True # Query-key-value bias\n", + "}\n", + "\n", + "model_configs = {\n", + " \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n", + " \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n", + " \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n", + " \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n", + "}\n", + "\n", + "\n", + "CHOOSE_MODEL = \"gpt2-small (124M)\"\n", + "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])" + ] + }, + { + "cell_type": "markdown", + "id": "d78fc2b0-ba27-4aff-8aa3-bc6e04fca69d", + "metadata": {}, + "source": [ + "### Download file" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ca224672-a0f7-4b39-9bc9-19ddde69487b", + "metadata": {}, + "outputs": [], + "source": [ + "file_name = \"gpt2-small-124M.pth\"\n", + "# file_name = \"gpt2-medium-355M.pth\"\n", + "# file_name = \"gpt2-large-774M.pth\"\n", + "# file_name = \"gpt2-xl-1558M.pth\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e7b22375-6fac-4e90-9063-daa4de86c778", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloaded to gpt2-small-124M.pth\n" + ] + } + ], + "source": [ + "import os\n", + "import urllib.request\n", + "\n", + "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n", + "\n", + "if not os.path.exists(file_name):\n", + " urllib.request.urlretrieve(url, file_name)\n", + " print(f\"Downloaded to {file_name}\")" + ] + }, + { + "cell_type": "markdown", + "id": "e61f0990-74cf-4b6d-85e5-4c7d0554db32", + "metadata": {}, + "source": [ + "### Load weights" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cda44d37-92c0-4c19-a70a-15711513afce", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from llms_from_scratch.ch04 import GPTModel\n", + "# For llms_from_scratch installation instructions, see:\n", + "# https://github.com/rasbt/LLMs-from-scratch/tree/main/pkg\n", + "\n", + "\n", + "gpt = GPTModel(BASE_CONFIG)\n", + "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n", + "gpt.eval()\n", + "\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "gpt.to(device);" + ] + }, + { + "cell_type": "markdown", + "id": "e0297fc4-11dc-4093-922f-dcaf85a75344", + "metadata": {}, + "source": [ + "### Generate text" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4ddd0d51-3ade-4890-9bab-d63f141d095f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output text:\n", + " Every effort moves forward, but it's not enough.\n", + "\n", + "\"I'm not going to sit here and say, 'I'm not going to do this,'\n" + ] + } + ], + "source": [ + "import tiktoken\n", + "from llms_from_scratch.ch05 import generate, text_to_token_ids, token_ids_to_text\n", + "\n", + "\n", + "torch.manual_seed(123)\n", + "\n", + "tokenizer = tiktoken.get_encoding(\"gpt2\")\n", + "\n", + "token_ids = generate(\n", + " model=gpt.to(device),\n", + " idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n", + " max_new_tokens=30,\n", + " context_size=BASE_CONFIG[\"context_length\"],\n", + " top_k=1,\n", + " temperature=1.0\n", + ")\n", + "\n", + "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))" + ] + }, + { + "cell_type": "markdown", + "id": "aa4a7912-ae51-4786-8ef4-42bd53682932", + "metadata": {}, + "source": [ + "## Alternative safetensors file" + ] + }, + { + "cell_type": "markdown", + "id": "2f774001-9cda-4b1f-88c5-ef99786a612b", + "metadata": {}, + "source": [ + "- In addition, the [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch) repository contains so-called `.safetensors` versions of the state dicts\n", + "- The appeal of `.safetensors` files lies in their secure design, as they only store tensor data and avoid the execution of potentially malicious code during loading\n", + "- In newer versions of PyTorch (e.g., 2.0 and newer), a `weights_only=True` argument can be used with `torch.load` (e.g., `torch.load(\"model_state_dict.pth\", weights_only=True)`) to improve safety by skipping the execution of code and loading only the weights (this is now enabled by default in PyTorch 2.6 and newer); so in that case loading the weights from the state dict files should not be a concern (anymore)\n", + "- However, the code block below briefly shows how to load the model from these `.safetensor` files" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c0a4fd86-4119-4a94-ae5e-13fb60d198bc", + "metadata": {}, + "outputs": [], + "source": [ + "file_name = \"gpt2-small-124M.safetensors\"\n", + "# file_name = \"gpt2-medium-355M.safetensors\"\n", + "# file_name = \"gpt2-large-774M.safetensors\"\n", + "# file_name = \"gpt2-xl-1558M.safetensors\"" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "20f96c2e-3469-47fb-bad3-e9173a1f1ba3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloaded to gpt2-small-124M.safetensors\n" + ] + } + ], + "source": [ + "import os\n", + "import urllib.request\n", + "\n", + "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n", + "\n", + "if not os.path.exists(file_name):\n", + " urllib.request.urlretrieve(url, file_name)\n", + " print(f\"Downloaded to {file_name}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "d16a69b3-9bb4-42f8-8e4f-cc62a1a1a083", + "metadata": {}, + "outputs": [], + "source": [ + "# Load file\n", + "\n", + "from safetensors.torch import load_file\n", + "\n", + "gpt = GPTModel(BASE_CONFIG)\n", + "gpt.load_state_dict(load_file(file_name))\n", + "gpt.eval();" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "352e57f7-8d82-4c12-900c-03e41bc9de58", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output text:\n", + " Every effort moves forward, but it's not enough.\n", + "\n", + "\"I'm not going to sit here and say, 'I'm not going to do this,'\n" + ] + } + ], + "source": [ + "token_ids = generate(\n", + " model=gpt.to(device),\n", + " idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n", + " max_new_tokens=30,\n", + " context_size=BASE_CONFIG[\"context_length\"],\n", + " top_k=1,\n", + " temperature=1.0\n", + ")\n", + "\n", + "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/pkg/llms_from_scratch/README.md b/pkg/llms_from_scratch/README.md index 2cffbec..355d967 100644 --- a/pkg/llms_from_scratch/README.md +++ b/pkg/llms_from_scratch/README.md @@ -79,7 +79,8 @@ from llms_from_scratch.ch05 import ( token_ids_to_text, calc_loss_batch, calc_loss_loader, - plot_losses + plot_losses, + download_and_load_gpt2 ) from llms_from_scratch.ch06 import ( diff --git a/pkg/llms_from_scratch/ch05.py b/pkg/llms_from_scratch/ch05.py index 39d1a6b..f0ef5d7 100644 --- a/pkg/llms_from_scratch/ch05.py +++ b/pkg/llms_from_scratch/ch05.py @@ -4,10 +4,16 @@ # Code: https://github.com/rasbt/LLMs-from-scratch from .ch04 import generate_text_simple + +import json +import os +import urllib.request + import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import torch +from tqdm import tqdm def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None): @@ -231,3 +237,119 @@ def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses): fig.tight_layout() # Adjust layout to make room plt.savefig("loss-plot.pdf") plt.show() + + +def download_and_load_gpt2(model_size, models_dir): + import tensorflow as tf + + # Validate model size + allowed_sizes = ("124M", "355M", "774M", "1558M") + if model_size not in allowed_sizes: + raise ValueError(f"Model size not in {allowed_sizes}") + + # Define paths + model_dir = os.path.join(models_dir, model_size) + base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" + backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2" + filenames = [ + "checkpoint", "encoder.json", "hparams.json", + "model.ckpt.data-00000-of-00001", "model.ckpt.index", + "model.ckpt.meta", "vocab.bpe" + ] + + # Download files + os.makedirs(model_dir, exist_ok=True) + for filename in filenames: + file_url = os.path.join(base_url, model_size, filename) + backup_url = os.path.join(backup_base_url, model_size, filename) + file_path = os.path.join(model_dir, filename) + download_file(file_url, file_path, backup_url) + + # Load settings and params + tf_ckpt_path = tf.train.latest_checkpoint(model_dir) + settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8")) + params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) + + return settings, params + + +def download_file(url, destination, backup_url=None): + def _attempt_download(download_url): + with urllib.request.urlopen(download_url) as response: + # Get the total file size from headers, defaulting to 0 if not present + file_size = int(response.headers.get("Content-Length", 0)) + + # Check if file exists and has the same size + if os.path.exists(destination): + file_size_local = os.path.getsize(destination) + if file_size == file_size_local: + print(f"File already exists and is up-to-date: {destination}") + return True # Indicate success without re-downloading + + block_size = 1024 # 1 Kilobyte + + # Initialize the progress bar with total file size + progress_bar_description = os.path.basename(download_url) + with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: + with open(destination, "wb") as file: + while True: + chunk = response.read(block_size) + if not chunk: + break + file.write(chunk) + progress_bar.update(len(chunk)) + return True + + try: + if _attempt_download(url): + return + except (urllib.error.HTTPError, urllib.error.URLError): + if backup_url is not None: + print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}") + try: + if _attempt_download(backup_url): + return + except urllib.error.HTTPError: + pass + + # If we reach here, both attempts have failed + error_message = ( + f"Failed to download from both primary URL ({url})" + f"{' and backup URL (' + backup_url + ')' if backup_url else ''}." + "\nCheck your internet connection or the file availability.\n" + "For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273" + ) + print(error_message) + except Exception as e: + print(f"An unexpected error occurred: {e}") + + +def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): + import tensorflow as tf + + # Initialize parameters dictionary with empty blocks for each layer + params = {"blocks": [{} for _ in range(settings["n_layer"])]} + + # Iterate over each variable in the checkpoint + for name, _ in tf.train.list_variables(ckpt_path): + # Load the variable and remove singleton dimensions + variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) + + # Process the variable name to extract relevant parts + variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix + + # Identify the target dictionary for the variable + target_dict = params + if variable_name_parts[0].startswith("h"): + layer_number = int(variable_name_parts[0][1:]) + target_dict = params["blocks"][layer_number] + + # Recursively access or create nested dictionaries + for key in variable_name_parts[1:-1]: + target_dict = target_dict.setdefault(key, {}) + + # Assign the variable array to the last key + last_key = variable_name_parts[-1] + target_dict[last_key] = variable_array + + return params diff --git a/pyproject.toml b/pyproject.toml index 690dc24..d1bda8f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta" [project] name = "llms-from-scratch" -version = "1.0.1" +version = "1.0.2" description = "Implement a ChatGPT-like LLM in PyTorch from scratch, step by step" readme = "README.md" requires-python = ">=3.10"