mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-25 23:11:23 +00:00 
			
		
		
		
	Alt weight loading code via PyTorch (#585)
* Alt weight loading code via PyTorch * commit additional files
This commit is contained in:
		
							parent
							
								
									e07a7abdd5
								
							
						
					
					
						commit
						e55e3e88e1
					
				| @ -113,7 +113,7 @@ Several folders contain optional materials as a bonus for interested readers: | ||||
| - **Chapter 4: Implementing a GPT model from scratch** | ||||
|   - [FLOPS Analysis](ch04/02_performance-analysis/flops-analysis.ipynb) | ||||
| - **Chapter 5: Pretraining on unlabeled data:** | ||||
|   - [Alternative Weight Loading from Hugging Face Model Hub using Transformers](ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb) | ||||
|   - [Alternative Weight Loading Methods](ch05/02_alternative_weight_loading/) | ||||
|   - [Pretraining GPT on the Project Gutenberg Dataset](ch05/03_bonus_pretraining_on_gutenberg) | ||||
|   - [Adding Bells and Whistles to the Training Loop](ch05/04_learning_rate_schedulers) | ||||
|   - [Optimizing Hyperparameters for Pretraining](ch05/05_bonus_hparam_tuning) | ||||
|  | ||||
| @ -2133,20 +2133,53 @@ | ||||
|    "id": "127ddbdb-3878-4669-9a39-d231fbdfb834", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "<span style=\"color:darkred\">\n", | ||||
|     "  <ul>\n", | ||||
|     "    <li>For an alternative way to load the weights from the Hugging Face Hub, see <a href=\"../02_alternative_weight_loading\">../02_alternative_weight_loading</a></li>\n", | ||||
|     "    <ul>\n", | ||||
|     "      <li>This is useful if:</li>\n", | ||||
|     "      <ul>\n", | ||||
|     "        <li>the weights are temporarily unavailable</li>\n", | ||||
|     "        <li>a company VPN only permits downloads from the Hugging Face Hub but not from the OpenAI CDN, for example</li>\n", | ||||
|     "        <li>you are having trouble with the TensorFlow installation (the original weights are stored in TensorFlow files)</li>\n", | ||||
|     "      </ul>\n", | ||||
|     "    </ul>\n", | ||||
|     "    <li>The <a href=\"../02_alternative_weight_loading\">../02_alternative_weight_loading</a> code notebooks are replacements for the remainder of this section 5.5</li>\n", | ||||
|     "  </ul>\n", | ||||
|     "</span>\n" | ||||
|     "---\n", | ||||
|     "\n", | ||||
|     "---\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "⚠️ **Note: Some users may encounter issues in this section due to TensorFlow compatibility problems, particularly on certain Windows systems. TensorFlow is required here only to load the original OpenAI GPT-2 weight files, which we then convert to PyTorch.\n", | ||||
|     "If you're running into TensorFlow-related issues, you can use the alternative code below instead of the remaining code in this section.\n", | ||||
|     "This alternative is based on pre-converted PyTorch weights, created using the same conversion process described in the previous section. For details, refer to the notebook:\n", | ||||
|     "[../02_alternative_weight_loading/weight-loading-pytorch.ipynb](../02_alternative_weight_loading/weight-loading-pytorch.ipynb) notebook.**\n", | ||||
|     "\n", | ||||
|     "```python\n", | ||||
|     "file_name = \"gpt2-small-124M.pth\"\n", | ||||
|     "# file_name = \"gpt2-medium-355M.pth\"\n", | ||||
|     "# file_name = \"gpt2-large-774M.pth\"\n", | ||||
|     "# file_name = \"gpt2-xl-1558M.pth\"\n", | ||||
|     "\n", | ||||
|     "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n", | ||||
|     "\n", | ||||
|     "if not os.path.exists(file_name):\n", | ||||
|     "    urllib.request.urlretrieve(url, file_name)\n", | ||||
|     "    print(f\"Downloaded to {file_name}\")\n", | ||||
|     "\n", | ||||
|     "gpt = GPTModel(BASE_CONFIG)\n", | ||||
|     "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n", | ||||
|     "gpt.eval()\n", | ||||
|     "\n", | ||||
|     "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", | ||||
|     "gpt.to(device);\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "torch.manual_seed(123)\n", | ||||
|     "\n", | ||||
|     "token_ids = generate(\n", | ||||
|     "    model=gpt,\n", | ||||
|     "    idx=text_to_token_ids(\"Every effort moves you\", tokenizer).to(device),\n", | ||||
|     "    max_new_tokens=25,\n", | ||||
|     "    context_size=NEW_CONFIG[\"context_length\"],\n", | ||||
|     "    top_k=50,\n", | ||||
|     "    temperature=1.5\n", | ||||
|     ")\n", | ||||
|     "\n", | ||||
|     "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))\n", | ||||
|     "```\n", | ||||
|     "\n", | ||||
|     "---\n", | ||||
|     "\n", | ||||
|     "---" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -2197,7 +2230,10 @@ | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Relative import from the gpt_download.py contained in this folder\n", | ||||
|     "from gpt_download import download_and_load_gpt2" | ||||
|     "\n", | ||||
|     "from gpt_download import download_and_load_gpt2\n", | ||||
|     "# Alternatively:\n", | ||||
|     "# from llms_from_scratch.ch05 import download_and_load_gpt2" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|  | ||||
| @ -2,6 +2,8 @@ | ||||
| 
 | ||||
| This folder contains alternative weight loading strategies in case the weights become unavailable from OpenAI. | ||||
| 
 | ||||
| - [weight-loading-pytorch.ipynb](weight-loading-pytorch.ipynb): (Recommended) contains code to load the weights from PyTorch state dicts that I created by converting the original TensorFlow weights | ||||
| 
 | ||||
| - [weight-loading-hf-transformers.ipynb](weight-loading-hf-transformers.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `transformers` library | ||||
| 
 | ||||
| - [weight-loading-hf-safetensors.ipynb](weight-loading-hf-safetensors.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `safetensors` library directly (skipping the instantiation of a Hugging Face transformer model) | ||||
							
								
								
									
										356
									
								
								ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										356
									
								
								ch05/02_alternative_weight_loading/weight-loading-pytorch.ipynb
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,356 @@ | ||||
| { | ||||
|  "cells": [ | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "6d6bc54f-2b16-4b0f-be69-957eed5d112f", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "<table style=\"width:100%\">\n", | ||||
|     "<tr>\n", | ||||
|     "<td style=\"vertical-align:middle; text-align:left;\">\n", | ||||
|     "<font size=\"2\">\n", | ||||
|     "Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n", | ||||
|     "<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n", | ||||
|     "</font>\n", | ||||
|     "</td>\n", | ||||
|     "<td style=\"vertical-align:middle; text-align:left;\">\n", | ||||
|     "<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n", | ||||
|     "</td>\n", | ||||
|     "</tr>\n", | ||||
|     "</table>" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "72953590-5363-4398-85ce-54bde07f3d8a", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# Bonus Code for Chapter 5" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "1a4ab5ee-e7b9-45d3-a82b-a12bcfc0945a", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## Alternative Weight Loading from PyTorch state dicts" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "b2feea87-49f0-48b9-b925-b8f0dda4096f", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "- In the main chapter, we loaded the GPT model weights directly from OpenAI\n", | ||||
|     "- This notebook provides alternative weight loading code to load the model weights from PyTorch state dict files that I created from the original TensorFlow files and uploaded to the [Hugging Face Model Hub](https://huggingface.co/docs/hub/en/models-the-hub) at [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch)\n", | ||||
|     "- This is conceptually the same as loading weights of a PyTorch model from via the state-dict method described in chapter 5:\n", | ||||
|     "\n", | ||||
|     "```python\n", | ||||
|     "state_dict = torch.load(\"model_state_dict.pth\")\n", | ||||
|     "model.load_state_dict(state_dict) \n", | ||||
|     "```" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "e3f9fbb2-3e39-41ee-8a08-58ba0434a8f3", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Choose model" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 1, | ||||
|    "id": "b0467eff-b43c-4a38-93e8-5ed87a5fc2b1", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "torch version: 2.6.0\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "from importlib.metadata import version\n", | ||||
|     "\n", | ||||
|     "pkgs = [\"torch\"]\n", | ||||
|     "for p in pkgs:\n", | ||||
|     "    print(f\"{p} version: {version(p)}\")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 2, | ||||
|    "id": "9ea9b1bc-7881-46ad-9555-27a9cf23faa7", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "BASE_CONFIG = {\n", | ||||
|     "    \"vocab_size\": 50257,    # Vocabulary size\n", | ||||
|     "    \"context_length\": 1024, # Context length\n", | ||||
|     "    \"drop_rate\": 0.0,       # Dropout rate\n", | ||||
|     "    \"qkv_bias\": True        # Query-key-value bias\n", | ||||
|     "}\n", | ||||
|     "\n", | ||||
|     "model_configs = {\n", | ||||
|     "    \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n", | ||||
|     "    \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n", | ||||
|     "    \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n", | ||||
|     "    \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n", | ||||
|     "}\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "CHOOSE_MODEL = \"gpt2-small (124M)\"\n", | ||||
|     "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "d78fc2b0-ba27-4aff-8aa3-bc6e04fca69d", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Download file" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 3, | ||||
|    "id": "ca224672-a0f7-4b39-9bc9-19ddde69487b", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "file_name = \"gpt2-small-124M.pth\"\n", | ||||
|     "# file_name = \"gpt2-medium-355M.pth\"\n", | ||||
|     "# file_name = \"gpt2-large-774M.pth\"\n", | ||||
|     "# file_name = \"gpt2-xl-1558M.pth\"" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 4, | ||||
|    "id": "e7b22375-6fac-4e90-9063-daa4de86c778", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Downloaded to gpt2-small-124M.pth\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "import os\n", | ||||
|     "import urllib.request\n", | ||||
|     "\n", | ||||
|     "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n", | ||||
|     "\n", | ||||
|     "if not os.path.exists(file_name):\n", | ||||
|     "    urllib.request.urlretrieve(url, file_name)\n", | ||||
|     "    print(f\"Downloaded to {file_name}\")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "e61f0990-74cf-4b6d-85e5-4c7d0554db32", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Load weights" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 5, | ||||
|    "id": "cda44d37-92c0-4c19-a70a-15711513afce", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "import torch\n", | ||||
|     "from llms_from_scratch.ch04 import GPTModel\n", | ||||
|     "# For llms_from_scratch installation instructions, see:\n", | ||||
|     "# https://github.com/rasbt/LLMs-from-scratch/tree/main/pkg\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "gpt = GPTModel(BASE_CONFIG)\n", | ||||
|     "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n", | ||||
|     "gpt.eval()\n", | ||||
|     "\n", | ||||
|     "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", | ||||
|     "gpt.to(device);" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "e0297fc4-11dc-4093-922f-dcaf85a75344", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Generate text" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 6, | ||||
|    "id": "4ddd0d51-3ade-4890-9bab-d63f141d095f", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Output text:\n", | ||||
|       " Every effort moves forward, but it's not enough.\n", | ||||
|       "\n", | ||||
|       "\"I'm not going to sit here and say, 'I'm not going to do this,'\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "import tiktoken\n", | ||||
|     "from llms_from_scratch.ch05 import generate, text_to_token_ids, token_ids_to_text\n", | ||||
|     "\n", | ||||
|     "\n", | ||||
|     "torch.manual_seed(123)\n", | ||||
|     "\n", | ||||
|     "tokenizer = tiktoken.get_encoding(\"gpt2\")\n", | ||||
|     "\n", | ||||
|     "token_ids = generate(\n", | ||||
|     "    model=gpt.to(device),\n", | ||||
|     "    idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n", | ||||
|     "    max_new_tokens=30,\n", | ||||
|     "    context_size=BASE_CONFIG[\"context_length\"],\n", | ||||
|     "    top_k=1,\n", | ||||
|     "    temperature=1.0\n", | ||||
|     ")\n", | ||||
|     "\n", | ||||
|     "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "aa4a7912-ae51-4786-8ef4-42bd53682932", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "## Alternative safetensors file" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "2f774001-9cda-4b1f-88c5-ef99786a612b", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "- In addition, the [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch) repository contains so-called `.safetensors` versions of the state dicts\n", | ||||
|     "- The appeal of `.safetensors` files lies in their secure design, as they only store tensor data and avoid the execution of potentially malicious code during loading\n", | ||||
|     "- In newer versions of PyTorch (e.g., 2.0 and newer), a `weights_only=True` argument can be used with `torch.load` (e.g., `torch.load(\"model_state_dict.pth\", weights_only=True)`) to improve safety by skipping the execution of code and loading only the weights (this is now enabled by default in PyTorch 2.6 and newer); so in that case loading the weights from the state dict files should not be a concern (anymore)\n", | ||||
|     "- However, the code block below briefly shows how to load the model from these `.safetensor` files" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 7, | ||||
|    "id": "c0a4fd86-4119-4a94-ae5e-13fb60d198bc", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "file_name = \"gpt2-small-124M.safetensors\"\n", | ||||
|     "# file_name = \"gpt2-medium-355M.safetensors\"\n", | ||||
|     "# file_name = \"gpt2-large-774M.safetensors\"\n", | ||||
|     "# file_name = \"gpt2-xl-1558M.safetensors\"" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 8, | ||||
|    "id": "20f96c2e-3469-47fb-bad3-e9173a1f1ba3", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Downloaded to gpt2-small-124M.safetensors\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "import os\n", | ||||
|     "import urllib.request\n", | ||||
|     "\n", | ||||
|     "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n", | ||||
|     "\n", | ||||
|     "if not os.path.exists(file_name):\n", | ||||
|     "    urllib.request.urlretrieve(url, file_name)\n", | ||||
|     "    print(f\"Downloaded to {file_name}\")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 10, | ||||
|    "id": "d16a69b3-9bb4-42f8-8e4f-cc62a1a1a083", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# Load file\n", | ||||
|     "\n", | ||||
|     "from safetensors.torch import load_file\n", | ||||
|     "\n", | ||||
|     "gpt = GPTModel(BASE_CONFIG)\n", | ||||
|     "gpt.load_state_dict(load_file(file_name))\n", | ||||
|     "gpt.eval();" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 11, | ||||
|    "id": "352e57f7-8d82-4c12-900c-03e41bc9de58", | ||||
|    "metadata": {}, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Output text:\n", | ||||
|       " Every effort moves forward, but it's not enough.\n", | ||||
|       "\n", | ||||
|       "\"I'm not going to sit here and say, 'I'm not going to do this,'\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "token_ids = generate(\n", | ||||
|     "    model=gpt.to(device),\n", | ||||
|     "    idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n", | ||||
|     "    max_new_tokens=30,\n", | ||||
|     "    context_size=BASE_CONFIG[\"context_length\"],\n", | ||||
|     "    top_k=1,\n", | ||||
|     "    temperature=1.0\n", | ||||
|     ")\n", | ||||
|     "\n", | ||||
|     "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   "kernelspec": { | ||||
|    "display_name": "Python 3 (ipykernel)", | ||||
|    "language": "python", | ||||
|    "name": "python3" | ||||
|   }, | ||||
|   "language_info": { | ||||
|    "codemirror_mode": { | ||||
|     "name": "ipython", | ||||
|     "version": 3 | ||||
|    }, | ||||
|    "file_extension": ".py", | ||||
|    "mimetype": "text/x-python", | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.10.16" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  "nbformat_minor": 5 | ||||
| } | ||||
| @ -79,7 +79,8 @@ from llms_from_scratch.ch05 import ( | ||||
|     token_ids_to_text, | ||||
|     calc_loss_batch, | ||||
|     calc_loss_loader, | ||||
|     plot_losses | ||||
|     plot_losses, | ||||
|     download_and_load_gpt2 | ||||
| ) | ||||
| 
 | ||||
| from llms_from_scratch.ch06 import ( | ||||
|  | ||||
| @ -4,10 +4,16 @@ | ||||
| # Code: https://github.com/rasbt/LLMs-from-scratch | ||||
| 
 | ||||
| from .ch04 import generate_text_simple | ||||
| 
 | ||||
| import json | ||||
| import os | ||||
| import urllib.request | ||||
| 
 | ||||
| import numpy as np | ||||
| import matplotlib.pyplot as plt | ||||
| from matplotlib.ticker import MaxNLocator | ||||
| import torch | ||||
| from tqdm import tqdm | ||||
| 
 | ||||
| 
 | ||||
| def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None): | ||||
| @ -231,3 +237,119 @@ def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses): | ||||
|     fig.tight_layout()  # Adjust layout to make room | ||||
|     plt.savefig("loss-plot.pdf") | ||||
|     plt.show() | ||||
| 
 | ||||
| 
 | ||||
| def download_and_load_gpt2(model_size, models_dir): | ||||
|     import tensorflow as tf | ||||
| 
 | ||||
|     # Validate model size | ||||
|     allowed_sizes = ("124M", "355M", "774M", "1558M") | ||||
|     if model_size not in allowed_sizes: | ||||
|         raise ValueError(f"Model size not in {allowed_sizes}") | ||||
| 
 | ||||
|     # Define paths | ||||
|     model_dir = os.path.join(models_dir, model_size) | ||||
|     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" | ||||
|     backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2" | ||||
|     filenames = [ | ||||
|         "checkpoint", "encoder.json", "hparams.json", | ||||
|         "model.ckpt.data-00000-of-00001", "model.ckpt.index", | ||||
|         "model.ckpt.meta", "vocab.bpe" | ||||
|     ] | ||||
| 
 | ||||
|     # Download files | ||||
|     os.makedirs(model_dir, exist_ok=True) | ||||
|     for filename in filenames: | ||||
|         file_url = os.path.join(base_url, model_size, filename) | ||||
|         backup_url = os.path.join(backup_base_url, model_size, filename) | ||||
|         file_path = os.path.join(model_dir, filename) | ||||
|         download_file(file_url, file_path, backup_url) | ||||
| 
 | ||||
|     # Load settings and params | ||||
|     tf_ckpt_path = tf.train.latest_checkpoint(model_dir) | ||||
|     settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8")) | ||||
|     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) | ||||
| 
 | ||||
|     return settings, params | ||||
| 
 | ||||
| 
 | ||||
| def download_file(url, destination, backup_url=None): | ||||
|     def _attempt_download(download_url): | ||||
|         with urllib.request.urlopen(download_url) as response: | ||||
|             # Get the total file size from headers, defaulting to 0 if not present | ||||
|             file_size = int(response.headers.get("Content-Length", 0)) | ||||
| 
 | ||||
|             # Check if file exists and has the same size | ||||
|             if os.path.exists(destination): | ||||
|                 file_size_local = os.path.getsize(destination) | ||||
|                 if file_size == file_size_local: | ||||
|                     print(f"File already exists and is up-to-date: {destination}") | ||||
|                     return True  # Indicate success without re-downloading | ||||
| 
 | ||||
|             block_size = 1024  # 1 Kilobyte | ||||
| 
 | ||||
|             # Initialize the progress bar with total file size | ||||
|             progress_bar_description = os.path.basename(download_url) | ||||
|             with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | ||||
|                 with open(destination, "wb") as file: | ||||
|                     while True: | ||||
|                         chunk = response.read(block_size) | ||||
|                         if not chunk: | ||||
|                             break | ||||
|                         file.write(chunk) | ||||
|                         progress_bar.update(len(chunk)) | ||||
|             return True | ||||
| 
 | ||||
|     try: | ||||
|         if _attempt_download(url): | ||||
|             return | ||||
|     except (urllib.error.HTTPError, urllib.error.URLError): | ||||
|         if backup_url is not None: | ||||
|             print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}") | ||||
|             try: | ||||
|                 if _attempt_download(backup_url): | ||||
|                     return | ||||
|             except urllib.error.HTTPError: | ||||
|                 pass | ||||
| 
 | ||||
|         # If we reach here, both attempts have failed | ||||
|         error_message = ( | ||||
|             f"Failed to download from both primary URL ({url})" | ||||
|             f"{' and backup URL (' + backup_url + ')' if backup_url else ''}." | ||||
|             "\nCheck your internet connection or the file availability.\n" | ||||
|             "For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273" | ||||
|         ) | ||||
|         print(error_message) | ||||
|     except Exception as e: | ||||
|         print(f"An unexpected error occurred: {e}") | ||||
| 
 | ||||
| 
 | ||||
| def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): | ||||
|     import tensorflow as tf | ||||
| 
 | ||||
|     # Initialize parameters dictionary with empty blocks for each layer | ||||
|     params = {"blocks": [{} for _ in range(settings["n_layer"])]} | ||||
| 
 | ||||
|     # Iterate over each variable in the checkpoint | ||||
|     for name, _ in tf.train.list_variables(ckpt_path): | ||||
|         # Load the variable and remove singleton dimensions | ||||
|         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) | ||||
| 
 | ||||
|         # Process the variable name to extract relevant parts | ||||
|         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix | ||||
| 
 | ||||
|         # Identify the target dictionary for the variable | ||||
|         target_dict = params | ||||
|         if variable_name_parts[0].startswith("h"): | ||||
|             layer_number = int(variable_name_parts[0][1:]) | ||||
|             target_dict = params["blocks"][layer_number] | ||||
| 
 | ||||
|         # Recursively access or create nested dictionaries | ||||
|         for key in variable_name_parts[1:-1]: | ||||
|             target_dict = target_dict.setdefault(key, {}) | ||||
| 
 | ||||
|         # Assign the variable array to the last key | ||||
|         last_key = variable_name_parts[-1] | ||||
|         target_dict[last_key] = variable_array | ||||
| 
 | ||||
|     return params | ||||
|  | ||||
| @ -4,7 +4,7 @@ build-backend = "setuptools.build_meta" | ||||
| 
 | ||||
| [project] | ||||
| name = "llms-from-scratch" | ||||
| version = "1.0.1" | ||||
| version = "1.0.2" | ||||
| description = "Implement a ChatGPT-like LLM in PyTorch from scratch, step by step" | ||||
| readme = "README.md" | ||||
| requires-python = ">=3.10" | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Sebastian Raschka
						Sebastian Raschka