mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-11-02 02:41:00 +00:00
Add CI tests for chapter 7 (#239)
This commit is contained in:
parent
0114dee9f6
commit
eb85c43bc3
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,5 +1,4 @@
|
||||
# Configs and keys
|
||||
ch07/01_main-chapter-code/gpt2-medium355M-sft-standalone.pth
|
||||
ch07/02_dataset-utilities/config.json
|
||||
ch07/03_model-evaluation/config.json
|
||||
|
||||
@ -36,6 +35,8 @@ ch06/02_bonus_additional-experiments/gpt2
|
||||
ch06/03_bonus_imdb-classification/gpt2
|
||||
|
||||
ch07/01_main-chapter-code/gpt2-medium355M-sft.pth
|
||||
ch07/01_main-chapter-code/gpt2-medium355M-sft-standalone.pth
|
||||
ch07/01_main-chapter-code/Smalltestmodel-sft-standalone.pth
|
||||
ch07/01_main-chapter-code/gpt2/
|
||||
|
||||
# Datasets
|
||||
|
||||
@ -147,7 +147,7 @@ def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
|
||||
# plt.show()
|
||||
|
||||
|
||||
def main():
|
||||
def main(test_mode=False):
|
||||
#######################################
|
||||
# Print package versions
|
||||
#######################################
|
||||
@ -177,6 +177,12 @@ def main():
|
||||
test_data = data[train_portion:train_portion + test_portion]
|
||||
val_data = data[train_portion + test_portion:]
|
||||
|
||||
# Use very small subset for testing purposes
|
||||
if args.test_mode:
|
||||
train_data = train_data[:10]
|
||||
val_data = val_data[:10]
|
||||
test_data = test_data[:10]
|
||||
|
||||
print("Training set length:", len(train_data))
|
||||
print("Validation set length:", len(val_data))
|
||||
print("Test set length:", len(test_data))
|
||||
@ -217,31 +223,50 @@ def main():
|
||||
#######################################
|
||||
# Load pretrained model
|
||||
#######################################
|
||||
BASE_CONFIG = {
|
||||
"vocab_size": 50257, # Vocabulary size
|
||||
"context_length": 1024, # Context length
|
||||
"drop_rate": 0.0, # Dropout rate
|
||||
"qkv_bias": True # Query-key-value bias
|
||||
}
|
||||
|
||||
model_configs = {
|
||||
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
||||
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
||||
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
||||
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
||||
}
|
||||
# Small GPT model for testing purposes
|
||||
if args.test_mode:
|
||||
BASE_CONFIG = {
|
||||
"vocab_size": 50257,
|
||||
"context_length": 120,
|
||||
"drop_rate": 0.0,
|
||||
"qkv_bias": False,
|
||||
"emb_dim": 12,
|
||||
"n_layers": 1,
|
||||
"n_heads": 2
|
||||
}
|
||||
model = GPTModel(BASE_CONFIG)
|
||||
model.eval()
|
||||
device = "cpu"
|
||||
CHOOSE_MODEL = "Small test model"
|
||||
|
||||
CHOOSE_MODEL = "gpt2-medium (355M)"
|
||||
# Code as it is used in the main chapter
|
||||
else:
|
||||
BASE_CONFIG = {
|
||||
"vocab_size": 50257, # Vocabulary size
|
||||
"context_length": 1024, # Context length
|
||||
"drop_rate": 0.0, # Dropout rate
|
||||
"qkv_bias": True # Query-key-value bias
|
||||
}
|
||||
|
||||
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
|
||||
model_configs = {
|
||||
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
||||
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
||||
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
||||
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
||||
}
|
||||
|
||||
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
|
||||
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
||||
CHOOSE_MODEL = "gpt2-medium (355M)"
|
||||
|
||||
model = GPTModel(BASE_CONFIG)
|
||||
load_weights_into_gpt(model, params)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
|
||||
|
||||
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
|
||||
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
||||
|
||||
model = GPTModel(BASE_CONFIG)
|
||||
load_weights_into_gpt(model, params)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
print("Loaded model:", CHOOSE_MODEL)
|
||||
print(50*"-")
|
||||
@ -259,6 +284,7 @@ def main():
|
||||
|
||||
start_time = time.time()
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00005, weight_decay=0.1)
|
||||
|
||||
num_epochs = 2
|
||||
|
||||
torch.manual_seed(123)
|
||||
@ -307,4 +333,19 @@ def main():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Finetune a GPT model for classification"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test_mode",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help=("This flag runs the model in test mode for internal testing purposes. "
|
||||
"Otherwise, it runs the model as it is used in the chapter (recommended).")
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
main(args.test_mode)
|
||||
|
||||
16
ch07/01_main-chapter-code/tests.py
Normal file
16
ch07/01_main-chapter-code/tests.py
Normal file
@ -0,0 +1,16 @@
|
||||
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||||
# Source for "Build a Large Language Model From Scratch"
|
||||
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||||
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||||
|
||||
# File for internal use (unit tests)
|
||||
|
||||
|
||||
import subprocess
|
||||
|
||||
|
||||
def test_gpt_class_finetune():
|
||||
command = ["python", "ch06/01_main-chapter-code/gpt_class_finetune.py", "--test_mode"]
|
||||
|
||||
result = subprocess.run(command, capture_output=True, text=True)
|
||||
assert result.returncode == 0, f"Script exited with errors: {result.stderr}"
|
||||
Loading…
x
Reference in New Issue
Block a user