Add CI tests for chapter 7 (#239)

This commit is contained in:
Sebastian Raschka 2024-06-22 08:57:18 -05:00 committed by GitHub
parent 0114dee9f6
commit eb85c43bc3
3 changed files with 81 additions and 23 deletions

3
.gitignore vendored
View File

@ -1,5 +1,4 @@
# Configs and keys
ch07/01_main-chapter-code/gpt2-medium355M-sft-standalone.pth
ch07/02_dataset-utilities/config.json
ch07/03_model-evaluation/config.json
@ -36,6 +35,8 @@ ch06/02_bonus_additional-experiments/gpt2
ch06/03_bonus_imdb-classification/gpt2
ch07/01_main-chapter-code/gpt2-medium355M-sft.pth
ch07/01_main-chapter-code/gpt2-medium355M-sft-standalone.pth
ch07/01_main-chapter-code/Smalltestmodel-sft-standalone.pth
ch07/01_main-chapter-code/gpt2/
# Datasets

View File

@ -147,7 +147,7 @@ def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
# plt.show()
def main():
def main(test_mode=False):
#######################################
# Print package versions
#######################################
@ -177,6 +177,12 @@ def main():
test_data = data[train_portion:train_portion + test_portion]
val_data = data[train_portion + test_portion:]
# Use very small subset for testing purposes
if args.test_mode:
train_data = train_data[:10]
val_data = val_data[:10]
test_data = test_data[:10]
print("Training set length:", len(train_data))
print("Validation set length:", len(val_data))
print("Test set length:", len(test_data))
@ -217,31 +223,50 @@ def main():
#######################################
# Load pretrained model
#######################################
BASE_CONFIG = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"drop_rate": 0.0, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
model_configs = {
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}
# Small GPT model for testing purposes
if args.test_mode:
BASE_CONFIG = {
"vocab_size": 50257,
"context_length": 120,
"drop_rate": 0.0,
"qkv_bias": False,
"emb_dim": 12,
"n_layers": 1,
"n_heads": 2
}
model = GPTModel(BASE_CONFIG)
model.eval()
device = "cpu"
CHOOSE_MODEL = "Small test model"
CHOOSE_MODEL = "gpt2-medium (355M)"
# Code as it is used in the main chapter
else:
BASE_CONFIG = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"drop_rate": 0.0, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
model_configs = {
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
CHOOSE_MODEL = "gpt2-medium (355M)"
model = GPTModel(BASE_CONFIG)
load_weights_into_gpt(model, params)
model.eval()
model.to(device)
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
model = GPTModel(BASE_CONFIG)
load_weights_into_gpt(model, params)
model.eval()
model.to(device)
print("Loaded model:", CHOOSE_MODEL)
print(50*"-")
@ -259,6 +284,7 @@ def main():
start_time = time.time()
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00005, weight_decay=0.1)
num_epochs = 2
torch.manual_seed(123)
@ -307,4 +333,19 @@ def main():
if __name__ == "__main__":
main()
import argparse
parser = argparse.ArgumentParser(
description="Finetune a GPT model for classification"
)
parser.add_argument(
"--test_mode",
default=False,
action="store_true",
help=("This flag runs the model in test mode for internal testing purposes. "
"Otherwise, it runs the model as it is used in the chapter (recommended).")
)
args = parser.parse_args()
main(args.test_mode)

View File

@ -0,0 +1,16 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
# File for internal use (unit tests)
import subprocess
def test_gpt_class_finetune():
command = ["python", "ch06/01_main-chapter-code/gpt_class_finetune.py", "--test_mode"]
result = subprocess.run(command, capture_output=True, text=True)
assert result.returncode == 0, f"Script exited with errors: {result.stderr}"