From f2c8eeb6b8df47157a4ef9692e0c4bae43e445e9 Mon Sep 17 00:00:00 2001 From: rasbt Date: Wed, 13 Mar 2024 08:34:39 -0500 Subject: [PATCH] pretraining on project gutenberg --- .../2.pdf | Bin 0 -> 16780 bytes .../mha-implementations-Copy1.ipynb | 850 ++++++++++++++++++ .../hparam_search.py | 0 .../previous_chapters.py | 0 .../the-verdict.txt | 0 .../README.md | 121 +++ .../prepare_dataset.py | 66 ++ .../pretraining_simple.py | 212 +++++ .../previous_chapters.py | 313 +++++++ 9 files changed, 1562 insertions(+) create mode 100644 ch03/02_bonus_efficient-multihead-attention/2.pdf create mode 100644 ch03/02_bonus_efficient-multihead-attention/mha-implementations-Copy1.ipynb rename ch05/{02_hparam_tuning => 02_bonus_hparam_tuning}/hparam_search.py (100%) rename ch05/{02_hparam_tuning => 02_bonus_hparam_tuning}/previous_chapters.py (100%) rename ch05/{02_hparam_tuning => 02_bonus_hparam_tuning}/the-verdict.txt (100%) create mode 100644 ch05/03_bonus_pretraining_on_gutenberg/README.md create mode 100644 ch05/03_bonus_pretraining_on_gutenberg/prepare_dataset.py create mode 100644 ch05/03_bonus_pretraining_on_gutenberg/pretraining_simple.py create mode 100644 ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py diff --git a/ch03/02_bonus_efficient-multihead-attention/2.pdf b/ch03/02_bonus_efficient-multihead-attention/2.pdf new file mode 100644 index 0000000000000000000000000000000000000000..06ef06cb0c6d0e3418038a49286766386157f48a GIT binary patch literal 16780 zcmb`v2{={V7eB6$T=SelS4f0AU#=L~Zu4O-q_6gXzN z1Hx**(_s>k0+(Gm)eNL)n^7DoBsg}Z!Pt>PA^Ca1anLCYVdm!O?C#|X$FE-X^Cp^+ zC~#XqRznN0LJFk75xSm$1+~?q`sz^^e(*1LQ0oPN_=dRmBLVJK*hiR>$lm^bL?92u zKcH_&a&~uA^9}?Qk>C%DN6N^-F<6`o9t@9A2ZDjS$#B97d#YYu-rx)cb^Tiz(B(hc zGaz}nQrzIERf<~f9zb3=LdydvL4!o}b|yh=lPP{AM^9K_cBf^lk*GHN-3iO_MCF8s zN$>A7Z0mA}Bee!51S5GL7*?FkB25Yrm+sp0+FGCvYVk58s2nK28WzZbNE=+J|M~vJ zt6w*2iNnEY+xp1NVrByjqm7d3BrRGL+6Up3vtMt=lpmK}lt}ENLzma`>I)5VbhDXE* zqbf;~uln6T%XaO2tOZ9g&&QUFI(<6Xa_@dBPx|&d7DhzZkbC~WInVU4>wQ!It;a9p z_Dz0#c+|$uWdBv1Oxy+DQ|}i|isHjedpVXOW-^k}IhMrjLK%!CBF^j^;2-hMImMg4 znOi!aw|rCub6m)OVGE*(@rcZ==Gy@_i-}9mt9pyWo`l&mOB$T6HKBi)GR+>Nk}ov) zVEjQin+wC(%<~gd1EQBR(6NGp9@kEZMreqV5RojEM-zk37+(ugxQA5u>GGb|c6aTm zr(K=Dh+k`mM#3|HO+|SgKTf6u4-NItkGfT75A2)%t^M`n@N{NQf+O?uNr|U-E>z8x zm^f;6KNA_)exF`lVEdO=^=ML9>>&BrQLTmSuxL5W2)98F+r?*lROU9RrKcooaNP}W z5GA+xhJ`4Lj-Bv#nXu$Lm17^!95B;t|H1R<$)KtQEho|NGYba!%CZgi2vou2{1fUb z5+ayUbQV$TrN$|%#uCo2(iIn%1}<91Pu{-oWjE9zWn*xy?<=M@d#7~GSmRj9v)A9p zxGH`97yawy6>Z9D+Mmro6MNur+Oa5B=%&5f;76Oq?|O!0&m%2G=j;sP`}OiKO9@;# zEDeX5jUS0vSg33sYJJkzboe{I7GaLrGNg`#4hi%yU z5cl%PcGiJ;B!j!X?i$H<`{>o)Ku% zKo-3#wYexOAfF?i_nCgXI?LAGT@C5tbM*CrT9@*-bRD`9{94x@{rrxAae}&i&IsRJ z5|3}Izf&{zL#)AkUJ?fl^OB?8_PKk(CZXdn%_k9pPEXTS+oN7N9;viR9ml#_+!blg zxLd3t>5nzqc4A4E+tzMc>}BV@=k-L(3BC(T{dcT{I$kX8{xLQrack%AM%oYZoyrP^ zS^LMnPBe`y#!MiTs#p)*{rNjnI;@LLpJ{e)yZiYqTem#l^_+Y0{<~(YVA>xg*+~Za zYNw9{-fXFtD^)C3q3O=$jDPE9MX$i5ws_9~R!RHWPQyp5!r!v2MEFII#;F<%e_y7- zD9l&l>_SubC-xF;QDgbgE5|jgi8r<=aU;b#VtaSyTM_ixX?hMV`0v)Igb^h&%=dt-AJQ*9EyV6bgs?e>A~(l)Z(Q~< zGcYwOI?8;wP*zZ3QmpeAwlzp*`!_btrKX_HJu6QeZJ+f!ZN*q=~l_7-rWBFo=# zYSlHPF}MxzXrk*ygW6gAVK3lseXYwlW8XG?J4H(CUt46!q zX}3=ydlV-btChF;60cZabJBS~WO}#0@5@EWHtpv_Qn!r;di93#T&H#I0uJr>bhqE; z&n-)z$huRZj$wY+TPYd&M6Vy`C8AObgyp0|cE;qIcd?dp>^|ut8rYU&G?S05`=Q$N z{qAv9ZLi(VlDCbuBy&o!kIv>U#JTM*o>>ab`F^+lH;uZXc{LTCQ3+>q8<ov;=o)qFtGA0jcSYgCo zL=@OBv?CictXitdWi7Ay)$DZx-@s$lz+?#<;7Jx|y26vo<=y|`iR9+a>hdPUdiSF(Drv>V5}ZuCn0lBT z?~gm&tcW4>($O)AGF0IiTx?k_w^(kcd7dJ`Ooc57eymZI9QJ>+g^N?=Y(Ua!&KkYm zDy%wqrDsZQ=AN`}&Ff>~<$3+xuDm#PVsk8fB9E`-cC2Q&gl?d~6}6~9`5)DGC*5!1 z0?KP;C`BEx*nJ`+p+9N66}C%J;SGX{Yj`6d|2J<+@$Hb?P@gflzxB1*=AY&V*jj)0 zojwtCpUt-A4kIt~&iogVskGi<72^I52M^KmsPXbUkH1vli`8@Cy_dDSnCq#i?<Td#1t$PuaF- zQo^~3?FbD^%5-W}^P`lwSvTVT2x+@Fle06Ey+PN$A~|Nh(hjRCJ5v!E0_1B%M&mZ* zDD}NGP+MP4aN9W)sLY8@WFGF-Jig@V`Sdm;?@nU!3o)}@Zwjjl)AXua)8qZ^(1s_Q z(MO#5llDIJ(Dg{3?Jnco){{Lt;$SybN@JaQUA=3H|GP${RP%UJ+fdleWX1a~rCW5o zjz9JYyLnjcQEgbX{(ve+cJ&P%wcPZc@ro}(!y>#I(s!Kll$OqZ`mWO4ubCnbh4NME+Kw`6M59xc9^3rhxdqh+*=n zaHee)3(omP?^u5fXJ%De&xMPU>TILW^80UXy!+#XS8RH_>btp?_1M;dqIHgme1{;xmy*GCb}%tX^RCE(Gx@E&&lOPhSQXq6@GtoF<$QXLEh<+rux{L@D=8}p`I=vM3@Ih)d(oo6L!}%k!``qk zkn^=*PffG;=wCq%>GYq*_=$gX zd-S%qWi;XUt2jFSbJyI2zmAl9J(qE)Gn3bJayIfSb&ow@G;7S=Q{8x%nf<$mrn&?< z@!323#>Y%Y(mZ$r^%m%b@`rZovsw(iEHauYQyl1?-D%TD*-1tBR6;r$yMcJ1nP})o zFT6EkHYX49>FT(pQdfbgwZX@GES+_tdu<}$()MiT(*DG$J{^Vk}<_mNX{37aXV%d^CN%-NQDF`@3GL_=QW@NshKpM^lcR@aNiJUNLUoDQweO#lgIT2*4%Yh6(QQGR(u^Hc;T%^NbMg3UnGi~GEsv=f(N6d*RvKfJzBSa6*CE@aSpLF%JT$I`$sr{gA zM3*}>{q>=Mu=X8~Nc&hZJL}Rd9v3`HW^U2MD=BiI`^DJhk+oa=`(0kd)C<3^6fy18 zO6%$4{Pt9muFb4!cq)w3vt)t%vy{p6=L;^QfaC9U-*81wq?I<1#(0vOthOkbRO_RH z6W)2`is#ntxft%Dd^lPoeUIx%%>Da&x>={IKe&z_5OzB_bj6ccq@~x~bC1Q)Flp<& z2BT{g_9O4_Q(XY8{$w)}Hs_$CFe;b`joAQ##O)^}(FrrRAB$8*9@zF$<=&MmRrvn- zQ#DDMMhTyUTYIWQoF1eX7F=otPipGKQMT1$?GcflAh?E{gBY=b@m`vMVx=x6*DVsWG-_ArK&Ln zPBt(2)*6p~J1Lhao)bIs z#o#*_d7qm&eawCnVShJ(B6MpHCs{2^RfbErb4v0udzNu&W&R~o6Q5$`E0d)cPrb3X zlcu6CDqszb-2jMGGFFJ!5N3W)h(vr6{UYKcq*WsAGBbRQHcP_T;A9m>w3{PTn;Df- zJ|00Q$Shdeyqwm8Xz)RFk;g5sZqAAmt@rhjWg4vjTj?z7+C5GLE zpATRWK_P_DgJ*YqrZ3i_SU<$ztmrHU>2@{`Vnk4r@|2YU9u%$yVOxo!W#*(kM{ zBGfULee-cRfv0A6EC$bD824gwdX~#w5@A{^XmjDDKWFODwux<=>8_{vhn<(^8Gc9E z?4qJUDv(lk1MaO7S!IkgMq-g>NUW?WQWkHDMBz+yP~)2!Lo=%FkoN_U?c0i^7^Gqy zRGl#m9wKIDMMCUMdClzCIPZtGxcC%qqA{uG=cU3CH3*5>01z-dr^-r;+DbcfEb^iX zTqUr};sD#rC42q;fF35H)({VqEumsjfl)hNKY7VEtcmAw9m}>im2eWy*za=@X(kXS zar6uET!?SVVW}%_frs=T8#eMuALWuREK5)3_rCKneO5cwGm%BJOPWco&m(Cb9m;TG zTZXp(n0sOK&<~IDAB!}PJ+Qh|1fm8IH)5oQCc0;6fft04z*5Gzu8F_~ele>u+tc$KLdYdZDWyI_+z-m+Q;LZ`J#!;ImigANp zKeb#)yCYc6IjaqB3yFrm-+W`6R0c7`+=pE#m1qpc!x=B*xr=qjFdc!hgUmB zD&Ia2kX4udGEx-$dBM#h-68Uc{&%ZD`$*-C;>>`LNoql_4Hb5E2*C=_3etOT9e?=F zD|BIByXmK2t+R82t>>tFqV55S!2-@> zORTQD6N-*KAzqkeBK{Onq{1Z?*oeVyz15Z=;>`unUjMOV0P(zo!x_=uNqqd8C$ ztNS4TOORJUo=5(Hsd)h!3@g&FAzI8Q#_nzZ19lbUg7e(hB;u~u1Zc@}X06{=Oo zhxhH4_`5!eO_@IWa*sBvoVh!?E$EY2|67FRwdkx*jQ%ywh`I+kFWye5C2u`iM#Fl@ zxv{JyzbNg)lw#NqS4}^yv%Rr$^1?|rPYGe8PcI4CjM>RnjCzVxR9g;z-1#~iVfW)b zpZ;{jLn^aF1w^Cp8!@7UW?y;$qGzsd7DI->zLz$CWqbd-{PedT)u3%^%uf3sT(`6I zb)+<&yDg1jIi=12@zDaBSoh2dE@n7qr%Jtw*Mh|u8|mJtUz z^j<2BY=Gp#b?WRD`91S~s+ULEi>m{W^9N=V@NBmU7v${Jy8Y zIHp=nhEIq2VcVuk=8&6W;HA22NCw=Ky$Q~%QIQ$LuOXPdDY1P-kCsO4C2#9`ey~)4 zAa(-_7z{Oj(%3Cz_za{NIyOH^^MUQkxu3d)rrMQ7oC;ZLa0(~)zZXuLiTZwY@U0rN zIbk9pi{pyPdL&f!5}xI;Gd>`_=vRcE$YoBc3GQRa;MOml&Q()K2^I=F=(#obWV9Zb ztk_(lVD>QcNX+5)MAG=39)&GUJ02e-6g&IopY=EQm-I2{O8ss!G#_A{60FTig7ue@ z1w2ODJR7%(Yn?Cq$T}MX-!E>a-Sh!I@QFb@E;zMhug?XKA5Zj=taQKBxH86LRo*j) zKI%04HqJRcHWn}u>fn8hLuY`!B~f^rU|7HfyQR_R^LLkgPb+lY;=d*^GkP@Rc|fzh zQxXq(Q|zEb(ZmrMn?8Q|SIL;>@ykC?KdyF2uMIbtncw%kYvDJokc7(u6;)C}S|~hb z1FB3=;G`91RzGf(D>5fStK8*+mcY+?6Z<_(8+xqZ;k8_0y)VLICc~nt#D?f+%II8) zi&JYcV>h0c!j*0n%3V1&4ZTmjmMyiOO-SZx96cWrep0M+46c)S`_y@b7sWa~bvq9nLKoV} z__s=0JANrt_dj#_M2^elMb_^LV;MpN!Zl{k(~fWBO^Z3ECs>gsHS5EKucyi4Br|=U z-TG;7h)ILSC9lu3Y&F)LD%-gixhJzq(yW{|v&2T04e*Rw3`tnsDVYlpt!7~KLs?In zv1*=?xZQAqUuq!HCi}ggHEhW%c=LA0NV)0CSdEcm4YUTLznw!ox|D6F-@Vhs2b`9h z>JEtwIo~O|N!3iQMEQ>6&%?EECo=bl%MqTJ=b`FZjNa;-zOt-t?z*J2A@a_VK zzACt1Gut-i`<;C|&+6QXNvv;iOIE+WkXg#j&WR^_dDo8~ z$}VQ5}s%)4ynC;==YABA~nn^KVlyGW|_w4-aFz`*oAl_ zZq`r5TB*QGxs5!S|9newpgXzy2l(jl;MF}Ab}_Fz;zLSyf{d9GUYJJpEji3mrw{su zeoI3#*=ZZcUzpB!d{+OCF7Eqf)2}mZDLK=nqo?0*+N`$Sg$ip_a2p!4f#sQ@ajPeo zy`Qx(9I|0jpjL<>R`JHKQ|fJuN$GC-qq$#FY}49EvmylV)|xl!QAVlmU%a|I%PW58 zGj9%9GB#%~6RXhcuzTuNfz?F}G|I)LAGsAjQG7hYIzRB!SbvX1=#&!rzDwm@08X+ok!*GdK6McX=7>>7plxQ{~u@TxL&FeM=HUQ@FOMyJ}lvnF?Flg4A#i;t08!cN={iXxl3z3JS|i z>)1$}CO02^AwP!I3yY_DFudpN_k}H27Z1r&(Hj*ciNbB6`my$q}GI#^1tSHbF|={p zf_UD3M-pR_v@agef4_;IYwqd%sgGVW0l}Lbnvl!iJpcQd6iW??;Whx2ap&4ufOzUN zSz%0c-CZ{n_n)~GMOiu`c7>if1KBD*z#E=;R^7m1I)nIH%zS^DvZ%=I8eIZ=v9T=O zem4VVOm>0(Na|EQN%3|dp{$qwLPE=swI^1CzfZ)2W9Q?%cCe)qXwGX=5-?FR#q&!|iv74)?c@i6$CD{E?o zB(2jbX^AmvXN385XdZUF31fU4Vhuj3<;gKz+a0wxd@l>l>zgbY>q!G6S?4cN_zhT& zW&(i|ES~Aecf-VW?80VC+i%@pSSn_CuAMiv87ol3YuFaV?WR0cp_NB|_3gKsU=MHHO+MquC)<9P9|6ugi+)W=5Q&Bun-{o++V;0sY*Zh^m zAWZf>6+x*$I}Bz6a9-L}->(VI{E`eicnLGdFs?X7sR_KhRF#yhsm1E>4fW=9jNS=r z`0f1X4{yhHs6@UlFX@Qv(s|h;AKji1dnZXc^0&q6};r5&x6437{4 zN7?rN=#3x=k2UeXaO7!r`BBa(2jc$ea(g4T}Ru+ekbLVl98j_8#;zFwyy^TDx$a+SZC&0KCB6YuiN>n+|oQ{k%L-A%Zbb2rV}jdGr=t{|f8kfdGO;Y3&WGd4_1twy^*XRGe zvjMDu>A}aaE{QuTg`f66{(ALlZ2eE~BV2cR43G|E5(w+3`t`kHFAE#TZFkO!Rj9o> z_aUppv}u;NlDkW~T)T_owls{+giFaP6T!2qx9i)ae36gd#Zb$wx4C!Jh3nFUAD&|n zD#XBzCsZEQI-yNz!$kYZ?!H@N{C3BjDyYjD7B4Hv{ibA{**=`CU)U{ZXf(O0sjW%( z(m~z%OPLvZ8cFHzgDcd&oo+}{RMtkdhD_sQJoD&xPY4x?bv)#jzuvsL&L!*Ffk}r4 zLQxWDEtx8dggn03a-|jsmW}ZbAYZj3&75*yU#IVV>qH9s_+|`O{vi5;N%Fx)pO0ys zN4Gw4`@Ms=ZG^~^6rz2lf|JEvt|7W1=a5{}p|4y7)`n=}g)Av%qTB8(LGdvS-8q$o zj*ps!Y`%YGGoLyUMP(wWVAze|rez-#(#Wk2zS|4Fr8T88G8IUM!fXU^oYQBe69$W_ z?7aAf=A9G1=&4BZ(ua@>UR*?_Nb}I@uv{gXBeWNIb_(-XeZF0s7O!coY#wB4!PYtw zRr;u1c<_?cr!ZZ~)56BF8QT-3NnW=@UgBA9+(N;;h0kkW<;B*YD%gZ#q#_L!^n?M+)eRUd!3#i?_rGAl@DQ(;GXntYFWzG* z9^j_+rI@BD*q8^jM@5?7nx@R(Ont#AJARZD`H-=-g!6;xX`P}v3*l!ondtJ{I9IwB z)4~Vi1>?T0Vfz{juP`;wS5=h1X%RdpWW^(rtI>dNdN{c~?eWL!F19Dr+#AjXMr7}O zF5PTJZ@Obh?!%ec++)%=wnX2}OgjS;w20w7srvbnc3kj}ZRS?+Cm#fKea^-hCx!%s zzR+PN9G40(+4&8#2gNn{Vu$9SYN%LJ2BE2j@@;soyW-OC{a^PnG;KjOM1jm_JVLaFVn;#@V0s~ODC#X_$zBpBR`|w zf+F|5b7EYADJ{dSEV-xbh4Rm4<6mulo43!ChkC#*XCY*O^^P*%r@A z3{Ez^M)AAe?j!ZGPaiB-%2aJFwR|icr&JX;1quL%Ac}(^jQl##4k2`pSs& zAxZ_leaF-CnYfpJQPFAm<;C`$d?R@{P=DevZ_n8A&eksv%pID}_j#${pN$UJMUVYF zTRt%{zesEEU>i+Eht#m-M&9rnCg`%NgN6HS_5;462u#C-;=QXiZZr4F)EWFk7suf~ zii+L7qB0cc$+Pi$&kKw-RKkg)Pvn+b?csHWiGC+W4{d&Qlt)3EMd;)Ttmq zxecs)p#6OzNM?=W`(Ja6-Wy;LhV|cT()A$@4<#Qm9aVWF&k=t)R9y9Y<{|jN)Funf zQ4`&cCBwVLnr2;>Ka?2KiDTlw`wJ9h^#pa>?D0(IedQBOlP&mRJ%a!euEU8NV$iUf z12FhrDN?)PoK78Evq{7++vx~wn$bm$HijePo5EhlA%y4h5d0ChnAjwL>QMSMSX_BT zxf;u*K3&b`@g$3J4OkoGSE{yuEBoLbE>yE`C|&?Yg+VI#4z-b&=}PDBgC!8y>ogBr zQYq+{$UU+D%HgPwOXVW^wM;>qiDx6byLVj8YCP?5eyr)KnE8=8?j{v6*_KQP*203P zg4&5ePIBAqgl_JLAFY^N;HXV<3GRNRRwL#Xa=g^ceekj`*F!-Z{X2{zw*vcgG9hQ5?yUhBQu9VcZ&(q&MD)XC)R8-&*8nvOlLIhUu7HxVKY^oGJiwNAG zx2N;>z0R{wEQIdcoxYhOocYBxxk&hpnQ~C3Om@v+U&mqWMA}Vha>$*kIz(AgLySvw z_vkMDKbYB0QG~081kWTr`Z7;SV;;qp1D&dJ3xYHhfDb>zmO)g%~ zF7X1~J@69aRr-ga7PG=fY1=}#Y_gCO=$q{Ol&Z9U_Y(>ay0-+^zKxMfbC=?L{N-m{ z?`^P8(VV@HI7$!G)+zi#8qv^j`L=I%zNnW{IsVYQ;v3k!zVLg~MQ!u6_4)y-_}45~ zvMH8RBoJzjWYTKQ(8NT;Vy_12u%m^)nWGmO3e|pOin^PlAGjG|;J8``d$3>#=pGFc znds;4L-F>5qaf^J3P+gvJ5iQ%H6R)Qx)?cnf{X{XwL`DmueOrqAdNzzQE+K2c~XaIUZsslvA(2?TjzMKjngG54>3;zD89fTnu=8Qpx2FQSbLK;Y)(DVWc4N(5Z zzj-5nnqUYGcNZ5D$i9HmEo|Y?h6%EdBN1eR0Qr2NvUvfz>-Ob&2j3`dy2p{eq^Gz9|=wXJssf)Cpdx#M>qolfHWKd@?zZJ2zQVQ0{HZRBRpXUFTg5bAC3ak zg8&SIDFxE`gLA;ZQ8*$HjyMMPPJ`qRgr&PP#SLf?LbreCkt|Q_pUq?c8qQx+zdTR> zhj|7vdN{h0fu=V!-n1NI;a(1|n}`b4en=%Yhgo)9DqVfCj9@@_yzkULS; z%hiJf7)O{q6(1n`paAQ|!*Rf><-kKK3mybnIlurC)S)AE z9c*C7gN!Fxa6dFA0mMAK+)5jCTowi+3xkdj6Od3)!2^SX?!^JYSH=K+0o~;~c69B-%gLXU$4Fp`Fiv@IXz=L22(0y1q4jkoxvY_K~K|}rU%SwQb5dGyz zgA@pO01AacG;!dbWu^RK4mvK|4@3zIogg642goM=lx164wF$@`{w@$- z%jaMW$Tt2INOC+92j&p)3fTaaLXZP<0@(!!UVoQAHu2{ODFw_sZ21V)|0>IKy>cDu z^G|{70-9Cm_;2#a->V{35R8_6A@J8giObPV6Am2ba!m`qyz}1_a^GNPm)rE=;8WIe z%@7VI8Ps6Fm7`Z9qX`^L`0`bAIC?o&L7pAGO2ZM3UZvp#^t#fI2w&dj2S#xQRlo891GT9#|>;Hg=uc>w!a zsd>Ty99+KY1qaS^r3M8v?5a@S@a3;ZKzJw+VpnPTK(TVU^S_Z4e2V_JWi_BKQ-=K$ zR9DIS0W)3cO9oHUY7L5{s|>8fY22!~6gXINfRSM<0T`Ic${kQl2A*n}rau&gS8D%; zPVkL-x#=jF`ITBAutTT@1ECN+Rm)eGqdb0v^1u0|5bZyaPzyYND>VPT4srD7x+>~# z{P9o5DMDQpbV3jv;V395Aym=-$8G>Ptake=d_g2vN&HI}l6PGrB>K8WNTNR+uEg?{ zOj?A#yE6ocz(Wbizno_34`S~!ldCCM!14ckvpPr>g<#(vfX{q9yeS^;PVfMXjI0b& z3hqXs_>koh2+w~m$$0y@N`Pm<&)eCb2r^IqzRSni1@7cXJOZe!jsSWt5AW{nr2%E> z?$MA(BhgqS1_iceW6>zIG!iF{M2buNrI$cIk_!xY3M>o+wbdVpSvc?Svr!`8MTk-#+8^g}|A#F{n~^uVlbgG^{`8}MWQZ3AZj4z6v3-ml%(ZFFKXTPQ&R(9vcsyucu4E06e&6JOUnMaQwFoKqY7$1O5Je7QhzU_5HA5ZMC+a?0O%8Lap~D zDC~NFfWiYjv}Qb%-1_Gd1!1i<{m>{VibKDDc}8Qv_SQ9R;C0$xHbn7rboU_nE&ta9 yGxs2{0tHJyQ*Up`nJ>pST`w1J0DYEEKnx*M9Q`QE?h}Q>qLDB$G0pv2u>TJ!#>K7x literal 0 HcmV?d00001 diff --git a/ch03/02_bonus_efficient-multihead-attention/mha-implementations-Copy1.ipynb b/ch03/02_bonus_efficient-multihead-attention/mha-implementations-Copy1.ipynb new file mode 100644 index 0000000..41a4801 --- /dev/null +++ b/ch03/02_bonus_efficient-multihead-attention/mha-implementations-Copy1.ipynb @@ -0,0 +1,850 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6f678e62-7bcb-4405-86ae-dce94f494303", + "metadata": { + "id": "6f678e62-7bcb-4405-86ae-dce94f494303" + }, + "source": [ + "# Efficient Multi-Head Attention Implementations" + ] + }, + { + "cell_type": "markdown", + "id": "b742938a-4bfc-4527-a1f1-d5963508967d", + "metadata": { + "id": "b742938a-4bfc-4527-a1f1-d5963508967d" + }, + "source": [ + "This code notebook compares different ways to implement causal multi-head attention used in decoder-style LLMs like GPT, Llama, etc." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "7898551e-f582-48ac-9f66-3632abe2a93f", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7898551e-f582-48ac-9f66-3632abe2a93f", + "outputId": "7d088260-3fa1-44f2-bd65-2a46e289f9d4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PyTorch version: 2.1.0\n", + "Running on cpu\n" + ] + } + ], + "source": [ + "import torch\n", + "\n", + "torch.manual_seed(123)\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "print(f\"PyTorch version: {torch.__version__}\")\n", + "print(f\"Running on {device}\")\n", + "\n", + "batch_size = 8\n", + "context_len = 1024\n", + "embed_dim = 768\n", + "embeddings = torch.randn((batch_size, context_len, embed_dim), device=device)" + ] + }, + { + "cell_type": "markdown", + "id": "2f9bb1b6-a1e5-4e0a-884d-0f31b374a8d6", + "metadata": { + "id": "2f9bb1b6-a1e5-4e0a-884d-0f31b374a8d6" + }, + "source": [ + "## 1) CausalAttention MHA wrapper class from chapter 3" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "297c93ed-aec0-4896-bb89-42c4b294d3d1", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "297c93ed-aec0-4896-bb89-42c4b294d3d1", + "outputId": "f8a33752-2cd6-4101-8feb-9d1699984719" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([8, 1024, 768])\n" + ] + } + ], + "source": [ + "from ch03 import MultiHeadAttentionWrapper as Ch03_MHA_Wrapper\n", + "\n", + "mha_ch03_wrapper = Ch03_MHA_Wrapper(\n", + " d_in=embed_dim,\n", + " d_out=embed_dim//12,\n", + " block_size=context_len,\n", + " dropout=0.0,\n", + " num_heads=12,\n", + " qkv_bias=False\n", + ").to(device)\n", + "\n", + "out = mha_ch03_wrapper(embeddings)\n", + "print(out.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "21930804-b327-40b1-8e63-94dcad39ce7b", + "metadata": { + "id": "21930804-b327-40b1-8e63-94dcad39ce7b" + }, + "source": [ + "## 2) The multi-head attention class from chapter 3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4ee6a61b-d25c-4a0c-8a59-f285544e3710", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4ee6a61b-d25c-4a0c-8a59-f285544e3710", + "outputId": "b704a040-3547-422c-ecda-df9982a2da35" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([8, 1024, 768])\n" + ] + } + ], + "source": [ + "from ch03 import MultiHeadAttention as Ch03_MHA\n", + "\n", + "mha_ch03 = Ch03_MHA(\n", + " d_in=embed_dim,\n", + " d_out=embed_dim,\n", + " block_size=context_len,\n", + " dropout=0.0,\n", + " num_heads=12,\n", + " qkv_bias=False\n", + ").to(device)\n", + "\n", + "out = mha_ch03(embeddings)\n", + "print(out.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "73cd11da-ea3b-4081-b483-c4965dfefbc4", + "metadata": { + "id": "73cd11da-ea3b-4081-b483-c4965dfefbc4" + }, + "source": [ + "## 3) An alternative multi-head attention with combined weights" + ] + }, + { + "cell_type": "markdown", + "id": "1fa1a5ea-eaff-4d2d-aaf0-b34cdb6fd4dd", + "metadata": { + "id": "1fa1a5ea-eaff-4d2d-aaf0-b34cdb6fd4dd" + }, + "source": [ + "- The code for the `MultiHeadAttentionAlt` class below is based on code that was kindly shared by [Rayed Bin Wahed](https://github.com/rasbt/LLMs-from-scratch/discussions/51)\n", + "- The main difference between the `MultiHeadAttentionAlt` class and the `MultiHeadAttention` class used in chapter 3 is that `MultiHeadAttentionAlt` uses a single weight matrix, `self.qkv = nn.Linear(d_in, 3 * d_out, bias=qkv_bias)` instead of separate weight matrices:\n", + "\n", + " - `self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)`\n", + " - `self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)`\n", + " - `self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)`\n", + "\n", + "- Here, `self.qkv` combines all three weight matrices `self.W_query`, `self.W_key`, and `self.W_value` to carry out the query, key, and value computation in a single step\n", + "- Using `q, k, v = qkv.unbind(0)`, we obtain the individual query, key, and value tensors, which are then used similarly to the query, key, and value tensors in the `MultiHeadAttention` class in chapter 3" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9a6bd0a2-f27c-4602-afa0-c96cd295c1a6", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9a6bd0a2-f27c-4602-afa0-c96cd295c1a6", + "outputId": "5d948671-176f-4633-bede-97767e36becc" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([8, 1024, 768])\n" + ] + } + ], + "source": [ + "import torch.nn as nn\n", + "\n", + "\n", + "class MultiHeadAttentionCombinedQKV(nn.Module):\n", + " def __init__(self, d_in, d_out, num_heads, block_size, dropout=0.0, qkv_bias=False):\n", + " super().__init__()\n", + "\n", + " assert d_out % num_heads == 0, \"embed_dim is indivisible by num_heads\"\n", + "\n", + " self.num_heads = num_heads\n", + " self.block_size = block_size\n", + " self.head_dim = d_out // num_heads\n", + "\n", + " self.qkv = nn.Linear(d_in, 3 * d_out, bias=qkv_bias)\n", + " self.proj = nn.Linear(d_in, d_out)\n", + " self.dropout = nn.Dropout(dropout)\n", + "\n", + " self.register_buffer(\n", + " \"mask\", torch.triu(torch.ones(block_size, block_size), diagonal=1)\n", + " )\n", + "\n", + " def forward(self, x):\n", + " batch_size, num_tokens, embed_dim = x.shape\n", + "\n", + " # (b, num_tokens, embed_dim) --> (b, num_tokens, 3 * embed_dim)\n", + " qkv = self.qkv(x)\n", + "\n", + " # (b, num_tokens, 3 * embed_dim) --> (b, num_tokens, 3, num_heads, head_dim)\n", + " qkv = qkv.reshape(batch_size, num_tokens, 3, self.num_heads, self.head_dim)\n", + "\n", + " # (b, num_tokens, 3, num_heads, head_dim) --> (3, b, num_heads, num_tokens, head_dim)\n", + " qkv = qkv.permute(2, 0, 3, 1, 4)\n", + "\n", + " # (3, b, num_heads, num_tokens, head_dim) -> 3 times (b, num_head, num_tokens, head_dim)\n", + " queries, keys, values = qkv.unbind(0)\n", + "\n", + " # (b, num_heads, num_tokens, head_dim) --> (b, num_heads, num_tokens, num_tokens)\n", + " attn_scores = queries @ keys.transpose(-2, -1)\n", + " attn_scores = attn_scores.masked_fill(\n", + " self.mask.bool()[:num_tokens, :num_tokens], -torch.inf\n", + " )\n", + "\n", + " attn_weights = torch.softmax(attn_scores / keys.shape[-1]**-0.5, dim=-1)\n", + " attn_weights = self.dropout(attn_weights)\n", + "\n", + " # (b, num_heads, num_tokens, num_tokens) --> (b, num_heads, num_tokens, head_dim)\n", + " context_vec = attn_weights @ values\n", + "\n", + " # (b, num_heads, num_tokens, head_dim) --> (b, num_tokens, num_heads, head_dim)\n", + " context_vec = context_vec.transpose(1, 2)\n", + "\n", + " # (b, num_tokens, num_heads, head_dim) --> (b, num_tokens, embed_dim)\n", + " context_vec = context_vec.reshape(batch_size, num_tokens, embed_dim)\n", + "\n", + " context_vec = self.proj(context_vec)\n", + "\n", + " return context_vec\n", + "\n", + "\n", + "mha_combined_qkv = MultiHeadAttentionCombinedQKV(\n", + " d_in=embed_dim,\n", + " d_out=embed_dim,\n", + " block_size=context_len,\n", + " dropout=0.0,\n", + " num_heads=12,\n", + " qkv_bias=False\n", + ").to(device)\n", + "\n", + "out = mha_combined_qkv(embeddings)\n", + "print(out.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "48a042d3-ee78-4c29-bf63-d92fe6706632", + "metadata": { + "id": "48a042d3-ee78-4c29-bf63-d92fe6706632" + }, + "source": [ + "## 4) Multihead attention with PyTorch's scaled dot product attention" + ] + }, + { + "cell_type": "markdown", + "id": "f78e346f-3b85-44e6-9feb-f01131381148", + "metadata": { + "id": "f78e346f-3b85-44e6-9feb-f01131381148" + }, + "source": [ + "- The implementation below uses PyTorch's [`scaled_dot_product_attention`](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) function, which implements a memory-optimized version of self-attention calld [flash attention](https://arxiv.org/abs/2205.14135)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1b8e5a0d-1f65-4a03-bf6e-723f0cc428f5", + "metadata": { + "id": "1b8e5a0d-1f65-4a03-bf6e-723f0cc428f5" + }, + "outputs": [], + "source": [ + "class MHAPyTorchScaledDotProduct(nn.Module):\n", + " def __init__(self, d_in, d_out, num_heads, block_size, dropout=0.0, qkv_bias=False):\n", + " super().__init__()\n", + "\n", + " assert d_out % num_heads == 0, \"embed_dim is indivisible by num_heads\"\n", + "\n", + " self.num_heads = num_heads\n", + " self.block_size = block_size\n", + " self.head_dim = d_out // num_heads\n", + " self.d_out = d_out\n", + "\n", + " self.qkv = nn.Linear(d_in, 3 * d_out, bias=qkv_bias)\n", + " self.proj = nn.Linear(d_in, d_out)\n", + " self.dropout = dropout\n", + "\n", + " self.register_buffer(\n", + " \"mask\", torch.triu(torch.ones(block_size, block_size), diagonal=1)\n", + " )\n", + "\n", + " def forward(self, x):\n", + " batch_size, num_tokens, embed_dim = x.shape\n", + "\n", + " # (b, num_tokens, embed_dim) --> (b, num_tokens, 3 * embed_dim)\n", + " qkv = self.qkv(x)\n", + "\n", + " # (b, num_tokens, 3 * embed_dim) --> (b, num_tokens, 3, num_heads, head_dim)\n", + " qkv = qkv.reshape(batch_size, num_tokens, 3, self.num_heads, self.head_dim)\n", + "\n", + " # (b, num_tokens, 3, num_heads, head_dim) --> (3, b, num_heads, num_tokens, head_dim)\n", + " qkv = qkv.permute(2, 0, 3, 1, 4)\n", + "\n", + " # (3, b, num_heads, num_tokens, head_dim) -> 3 times (b, num_heads, num_tokens, head_dim)\n", + " queries, keys, values = qkv.unbind(0)\n", + "\n", + " use_dropout = 0. if not self.training else self.dropout\n", + " context_vec = nn.functional.scaled_dot_product_attention(\n", + " queries, keys, values, attn_mask=None, dropout_p=use_dropout, is_causal=True)\n", + "\n", + " # Combine heads, where self.d_out = self.num_heads * self.head_dim\n", + " context_vec = context_vec.transpose(1, 2).contiguous().view(batch_size, num_tokens, self.d_out)\n", + "\n", + " return context_vec" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fbc8ba92-3471-41cb-b1b2-4c0ef5be392b", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fbc8ba92-3471-41cb-b1b2-4c0ef5be392b", + "outputId": "af9e4855-7f20-4d61-8532-4827df8dfb30" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([8, 1024, 768])\n" + ] + } + ], + "source": [ + "mha_pytorch_scaled = MHAPyTorchScaledDotProduct(\n", + " d_in=embed_dim,\n", + " d_out=embed_dim,\n", + " block_size=context_len,\n", + " dropout=0.0,\n", + " num_heads=12,\n", + " qkv_bias=False\n", + ").to(device)\n", + "\n", + "out = mha_pytorch_scaled(embeddings)\n", + "print(out.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "351c318f-4835-4d74-8d58-a070222447c4", + "metadata": { + "id": "351c318f-4835-4d74-8d58-a070222447c4" + }, + "source": [ + "## 5) Using PyTorch's torch.nn.MultiheadAttention" + ] + }, + { + "cell_type": "markdown", + "id": "74a6d060-6324-48fa-a35c-cb09f2a48965", + "metadata": { + "id": "74a6d060-6324-48fa-a35c-cb09f2a48965" + }, + "source": [ + "- Below, we use PyTorch's [torch.nn.MultiheadAttention](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html) implementation" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "3799c7ef-3155-42c6-a829-f95656453ae0", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3799c7ef-3155-42c6-a829-f95656453ae0", + "outputId": "2a085df8-0445-4818-9978-6dc74469f568" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([8, 1024, 768])\n" + ] + } + ], + "source": [ + "import torch.nn as nn\n", + "\n", + "\n", + "class MHAPyTorchClass(nn.Module):\n", + " def __init__(self, d_in, d_out, num_heads, block_size, dropout=0.0, qkv_bias=False, need_weights=True):\n", + " super().__init__()\n", + "\n", + " self.block_size = block_size\n", + " self.multihead_attn = nn.MultiheadAttention(\n", + " embed_dim=d_out,\n", + " num_heads=num_heads,\n", + " dropout=dropout,\n", + " bias=qkv_bias,\n", + " add_bias_kv=qkv_bias,\n", + " batch_first=True,\n", + " )\n", + "\n", + " self.need_weights = need_weights\n", + " self.proj = nn.Linear(d_out, d_out)\n", + " self.register_buffer(\"mask\", torch.triu(torch.ones(block_size, block_size), diagonal=1).bool())\n", + "\n", + " def forward(self, x):\n", + " batch_size, num_tokens, _ = x.shape\n", + "\n", + " # Ensure attn_mask is compatible with expected shape and `batch_first=True`\n", + " # No need to manually adjust for num_heads; ensure it's right for the sequence\n", + " if self.block_size >= num_tokens:\n", + " attn_mask = self.mask[:num_tokens, :num_tokens]\n", + " else:\n", + " attn_mask = self.mask[:self.block_size, :self.block_size]\n", + "\n", + " # attn_mask broadcasting will handle batch_size dimension implicitly\n", + " attn_output, _ = self.multihead_attn(\n", + " x, x, x, attn_mask=attn_mask, need_weights=self.need_weights\n", + " )\n", + "\n", + " output = self.proj(attn_output)\n", + "\n", + " return output\n", + "\n", + "\n", + "mha_pytorch_class_default = MHAPyTorchClass(\n", + " d_in=embed_dim,\n", + " d_out=embed_dim,\n", + " block_size=context_len,\n", + " dropout=0.0,\n", + " num_heads=12,\n", + " qkv_bias=False\n", + ").to(device)\n", + "\n", + "out = mha_pytorch_class_default(embeddings)\n", + "print(out.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "a3953bff-1056-4de2-bfd1-dfccf659eee4", + "metadata": { + "id": "a3953bff-1056-4de2-bfd1-dfccf659eee4" + }, + "source": [ + "## 6) Using PyTorch's torch.nn.MultiheadAttention with `scaled_dot_product_attention`" + ] + }, + { + "cell_type": "markdown", + "id": "d2164859-31a0-4537-b4fb-27d57675ba77", + "metadata": { + "id": "d2164859-31a0-4537-b4fb-27d57675ba77" + }, + "source": [ + "- Set `need_weights` (default `True`) to need_weights=False so that MultiheadAttention uses `scaled_dot_product_attention` [according to the documentation](https://github.com/pytorch/pytorch/blob/71d020262793542974cf13b30f2a9099773f015c/torch/nn/modules/activation.py#L1096)\n", + "\n", + "> need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.\n", + " Set ``need_weights=False`` to use the optimized ``scaled_dot_product_attention``\n", + " and achieve the best performance for MHA.\n", + " Default: ``True``." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4a4c2afe-5e1f-4bd7-a118-67031176f147", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4a4c2afe-5e1f-4bd7-a118-67031176f147", + "outputId": "234771f4-8a53-4478-8a9b-cf19f79a5e07" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "torch.Size([8, 1024, 768])\n" + ] + } + ], + "source": [ + "mha_pytorch_class_noweights = MHAPyTorchClass(\n", + " d_in=embed_dim,\n", + " d_out=embed_dim,\n", + " block_size=context_len,\n", + " dropout=0.0,\n", + " num_heads=12,\n", + " qkv_bias=False,\n", + " need_weights=False # NEW!\n", + ").to(device)\n", + "\n", + "out = mha_pytorch_class_noweights(embeddings)\n", + "print(out.shape)" + ] + }, + { + "cell_type": "markdown", + "id": "8877de71-f84f-4f6d-bc87-7552013b6301", + "metadata": { + "id": "8877de71-f84f-4f6d-bc87-7552013b6301" + }, + "source": [ + "## Quick speed comparison (M3 Macbook Air CPU)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a97c0b2e-6593-49d8-98bc-2267b3aa610f", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a97c0b2e-6593-49d8-98bc-2267b3aa610f", + "outputId": "ebe635b2-5c03-4e9b-da3a-951d308acf7b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "194 ms ± 2.75 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "## 1) CausalAttention MHA wrapper class from chapter 3\n", + "%timeit mha_ch03_wrapper(embeddings)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "19db9c2c-8e75-431a-8eef-0b4d8284e6e6", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "19db9c2c-8e75-431a-8eef-0b4d8284e6e6", + "outputId": "c6e7bcff-661c-45a6-da82-b1e3f89cf761" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "198 ms ± 4.12 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "## 2) The multi-head attention class from chapter 3\n", + "%timeit mha_ch03(embeddings)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "aa526ee0-7a88-4f34-a49a-f8f97da83779", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aa526ee0-7a88-4f34-a49a-f8f97da83779", + "outputId": "92b634f8-43f8-468f-87a1-bb774b64c212" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "234 ms ± 4.26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "## 3) An alternative multi-head attention with combined weights\n", + "%timeit mha_combined_qkv(embeddings)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "cc2b4256-16d8-4c34-9fd0-d4b4af0e60fa", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cc2b4256-16d8-4c34-9fd0-d4b4af0e60fa", + "outputId": "80c6e314-0771-470e-b090-628984ce2d85" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "71.7 ms ± 3.65 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" + ] + } + ], + "source": [ + "## 4) Multihead attention with PyTorch's scaled dot product attention\n", + "%timeit mha_pytorch_scaled(embeddings)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "0f209e70-ebb6-4a1a-b608-1ff42e41c01d", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0f209e70-ebb6-4a1a-b608-1ff42e41c01d", + "outputId": "3cd37b53-04d4-4dd0-9450-6fc8ebaac083" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "211 ms ± 5.31 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "## 5) Using PyTorch's torch.nn.MultiheadAttention\n", + "%timeit mha_pytorch_class_default(embeddings)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3f4968c2-8d40-4ab9-8dba-052b4f77d756", + "metadata": { + "id": "3f4968c2-8d40-4ab9-8dba-052b4f77d756", + "outputId": "2e86bdb4-7fa0-4051-b000-4a2b591060a2", + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "207 ms ± 18.3 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" + ] + } + ], + "source": [ + "## 6) Using PyTorch's torch.nn.MultiheadAttention disabling `need_weights`\n", + "%timeit mha_pytorch_class_noweights(embeddings)" + ] + }, + { + "cell_type": "markdown", + "id": "dabc6575-0316-4640-a729-e616d5c17b73", + "metadata": { + "id": "dabc6575-0316-4640-a729-e616d5c17b73" + }, + "source": [ + "## Speed comparison (Nvidia A100 GPU) with warmup" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "29b63d3d-6d0b-43bb-9c68-d5514dc81000", + "metadata": { + "id": "29b63d3d-6d0b-43bb-9c68-d5514dc81000" + }, + "outputs": [], + "source": [ + "# CUDA benchmark code shared by Andrei Aksionov\n", + "# and based on code from\n", + "# https://github.com/cuda-mode/lectures/blob/main/lecture1/pytorch_square.py\n", + "\n", + "import time\n", + "\n", + "def time_pytorch_function(func, *input, num_repeats = 100):\n", + " # CUDA IS ASYNC so can't use python time module\n", + " #start = torch.cuda.Event(enable_timing=True)\n", + " #end = torch.cuda.Event(enable_timing=True)\n", + " start = time.time()\n", + " # Warmup\n", + " #for _ in range(5):\n", + " # func(*input)\n", + " #torch.cuda.synchronize()\n", + "\n", + " #start.record()\n", + " for _ in range(num_repeats):\n", + " func(*input)\n", + " #torch.cuda.synchronize()\n", + " #end.record()\n", + " #torch.cuda.synchronize()\n", + " return (time.time()-start) / num_repeats" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "CDJAPZaszaqx", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 489 + }, + "id": "CDJAPZaszaqx", + "outputId": "f23e9b83-7fd6-4011-9434-0e6934cf762a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHWCAYAAAD3vrTNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADLCUlEQVR4nOzddVhVWdvA4d+hRVAERMEce2xndHQMxMQiDLAFRcEEC8XAwlExUBRjFNuxu1vsGsXA7sDAFgPJ7w8/9ssRMGYOAuNzX5fXO2efffZeZ72bdZ699lrPUpmamiYghBBCCCEyDa30LoAQQgghhPg2EsAJIYQQQmQyEsAJIYQQQmQyEsAJIYQQQmQyEsAJIYQQQmQyEsAJIYQQQmQyEsAJIYQQQmQyEsAJIYQQQmQyOuldgIzG0tKSN2/epHcxhBBCCPGDMjIy4uHDh5/dRwK4JCwtLQkLC0vvYgghhBDiB1e6dOnPBnESwCWR2PNWunRp6YUTQgghxHdnZGREWFjYF+MQCeBS8ObNGyIjI9O7GEIIIYQQKZJJDEIIIYQQmUyGDuDc3NwIDQ0lPDycnTt38ssvv6S6b5MmTdizZw83b97k7t27hISE4Ozs/B1LK4QQQgjxfWTYAM7R0RE/Pz8mTJhA7dq1CQsLY9WqVZibm6e4/4sXLwgICKBBgwZYW1uzdOlSpk2bRq1atb5zyYUQQggh0laGDeC6d+/O4sWLWbp0KVeuXKFfv368f/+etm3bprj/4cOH2bJlC1evXuX27dvMnj2bCxcuUKVKle9cciGEEEKItJUhAzhdXV3KlSvH/v37lW0JCQns37+fSpUqfdUxrK2tKVKkCEePHk2rYgohhBBCpIsMGcCZmZmho6NDRESE2vaIiAgsLCxS/ZyxsTF37tzh0aNHLFu2DB8fH0JCQlLdX09PD2NjY+WfkZGRpr6CEOIzvmV8a/v27dm8eTM3btzgxo0brF27NsX9ixUrxpIlS7h16xZ3795l9+7d5MmTJy2/hhBCpJsMGcD9U2/evMHGxoa6devyxx9/MHr0aKpVq5bq/r179+b27dvKP0niK0Ta+9bxrdWqVWPt2rU4ODjQoEEDwsPDWb16NZaWlso+BQsWZMuWLVy7dg17e3usra2ZOHEiHz58+F5fSwghviuVqalpQnoX4lO6urrcv3+fjh07snXrVmX79OnTyZ49O+3atfuq40yZMoU8efLg5OSU4vt6enro6+srrxOT5xUsWFDywAmRRnbu3EloaCgDBw4EQKVScf78eebMmUNgYOAXP6+lpcXNmzcZOHAgK1asAGDOnDnExsbSrVu3NC27EEKkNWNjY27fvv3FWCRD9sDFxMRw9uxZrK2tlW0qlQpra2tOnjz51cfR0tJCT08v1fejo6OJjIxU/snqC0KkLU2MbzU0NERHR4cXL14AH9uG+vXrc/36dVatWsXly5fZuXMnjRo1SpPvIIQQGUGGDOAAZsyYQfv27WnVqhXFihVj4sSJGBoasnTpUuV9X19fZf/evXtjY2NDgQIFKFasGN27d8fZ2ZlVq1al11cQQnzin45vTWr48OE8evRICQJz5syJkZERXl5e7NmzhxYtWrBlyxYWLlxI1apVNf4dhBAiI8iwS2mtX78ec3NzfHx8sLCwICwsDGdnZ548eQJAnjx5iI+PV/Y3NDRk/PjxWFlZERUVxbVr1+jatSvr169Pp28ghNA0Ly8vmjZtir29vTK+TUvr433otm3bmDVrFgBhYWFUqlQJV1dXjhw5km7lFUKItJJhAziA4OBggoODU3zPwcFB7fWYMWMYM2bM9yiWEOIfevbsGbGxscl62ywsLJL1yn2qR48eeHl50axZMy5evKh2zJiYGK5evaq2/7Vr16hcubLmCi+EEBlIhn2EKoT47/mn41t79epF//79cXZ25syZM8mOGRoaSpEiRdS2Fy5cmHv37mm0/EIIkVFk6B44IcR/z4wZM5g+fTpnzpzh9OnTeHh4JBvf+vDhQ/z8/ADw9PTEx8cHDw8P7t69q/TevX37lrdv3wIQFBREcHAwR44c4dChQ9SpUwdbW1vs7e3T50sKIUQakwBOCPFdfev41o4dO6Kvr8+CBQvUjuPv78/48eMB2LJlC/369aN3796MHTuW69ev4+rqyvHjx7/b9xJCiO8pQ+aBSy9fm3tFCCGEECItZOo8cEIIIYQQInUSwAkhhBCpSIt1exNNnDiRZ8+e4eHhkRZFF/9xEsAJIYQQKUiLdXsTNW7cmIoVK/Lw4cO0/hriP0oCOCGEECIF3bt3Z/HixSxdupQrV67Qr18/3r9/T9u2bVPcv2vXrsybN4+wsDCuXbuGl5cXWlpaamlzACwtLRk3bhweHh7ExMR8j68i/oM0Ogs1f/78/P777+TNmxdDQ0OePn3K+fPnOXnypJI1XQghhMjoEtftnTJlirLt367bCx/zHs6cOZNp06Zx5coVTRdb/EA0EsC1aNECDw8PypcvT0REBI8ePSIqKoocOXJQsGBBPnz4wOrVqwkMDOT+/fuaOKUQQgiRZj63bm/RokW/6hifrtsLH5eDi42NZfbs2Rotr/jx/OsAbt++fcTExLBs2TJcXFx48OCB2vt6enpUqlSJpk2bsmfPHry9vdm4ceO/Pa0QQgiRYaW0bm+5cuVwd3endu3a6Vw68V/wrwO4UaNGsW/fvlTfj46O5vDhwxw+fJg//viD/Pnz/9tTCiGEEGkqLdbtrVKlCjlz5uTs2bPKNh0dHfz8/OjatSsVKlTQ7JcQ/2n/ehLD54K3T7148ULtwhVCCCEyorRYt3flypXUqFGDmjVrKv8ePnxIUFAQTk5OafVVMiRNp2cZMGAAx44d4+7du8o+v/76a1p/jXSl0VmoZcuW5eeff1ZeN2zYkMWLFzN06FB0dXU1eSohhBAiTc2YMYP27dvTqlUrihUrxsSJE5Ot2+vr66vs7+npyaBBg/D09FTW7bWwsCBr1qzAx06My5cvq/2LiYnh8ePHXL9+PV2+Y3pIi/QsN27cYODAgdSoUYNGjRpx9+5dVq9ejZmZ2ff6Wt+dRgO4gIAAihQpAkCBAgWYM2cO7969w97enhEjRmjyVEIIIUSaWr9+PcOHD8fHx4eQkBDKlCmTbN3eXLlyKfsnXbf30qVLyr8ePXqk11fIkNIiPcuaNWvYv38/d+7c4cqVK/j6+pItWzZKlSr1vb7Wd6fRNCKFCxfm/PnzADg4OHD06FE8PDz47bffCA4OZsiQIZo8nRBpzs3NjZ49e2JhYcGFCxfw8fHh9OnTKe7bvn17WrZsqfRCnz17ltGjRyv76+joMGTIEOrWrUuBAgWIjIxk//79jBo1ikePHn237/QtjLssSu8iZDiRczqkdxHEdxQcHExwcHCK7zk4OKi9/idj2H60cW9plZ7l03N06NCBV69eERYWpoliZ0ga7YFTqVRoaX08ZM2aNdm1axcA4eHhmJqaavJUQqQ5TXfzZ8mShbJlyzJx4kRq166Ni4sLRYoU4a+//vqeX0sIIdLN59KzfDphJDUppWcBqF+/Pnfu3OHBgwd069aN5s2b8/z5c42VPaPRaAB35swZ+vXrh7OzM1WrVlUCuAIFCihdzkJkFpru5o+MjKR58+Zs2LCB69ev8/fffzNw4EDKly9Pnjx5vudXE0KITCkxPUuHDh2SLRBw6NAhbGxsaNiwIXv27GHu3Lmp3nD/F2g0gBs8eDBly5bF39+fgIAAbt26BYC9vT0nTpzQ5KmESFOJ3fxJ7/A03c0PkC1bNuLj43n9+vW/LrMQQmR0mkjP0qJFC7X0LInevXvHrVu3+Pvvv5WEye3atdNo+TMSjY6Bu3jxIjVq1Ei2ffjw4cTFxWnyVEKkqbTKwp6Uvr4+w4YNY82aNURGRv7rMgshREaXND3L1q1bgf+lZ0ltrCF8TM/St29fnJyckqVnSY2WlhZ6enqaKHaGpNEALqmsWbMq4+ESyY+U+FGklIU9KR0dHebOnYtKpcLb2zsdSiiEEOljxowZTJ8+nTNnznD69Gk8PDySpWd5+PAhfn5+wMf0LD4+Pnh4eCjpWQDevn3L27dvMTQ0pG/fvmzfvp1Hjx5hZmaGm5sblpaWbNiwId2+Z1rT+GL2/v7+VKtWDQMDA2W7SqUiISHhqwcoin/mR58xqUlpkYU9kY6ODvPmzSNfvnw4OjrKjY0Q4oeyfv16zM3N8fHxwcLCgrCwsGTpWeLj45X9k6ZnScrf35/x48cTFxdH0aJFadWqFaamprx48YLQ0FCaNGnClStXvudX+640GsDNmjULlUqFp6cnT548ISEhQZOHF5+ROGOyf//+nDp1Cg8PD1atWkXlypV5+vRpsv0TZ0yeOHGCDx8+4OnpyerVq6lWrRoPHz5UmzF54cIFTExMGDNmDH/99Rd16tRJh2/4faVVN39i8FaoUCEcHBw+Oz5OCCH+qzSZnuXDhw+4uLhorGyZhcrU1FRjUdadO3eoU6dOps0obWxszO3btylYsGCm6xXZuXMnoaGhDBw4EPgYbJw/f545c+YQGBj4xc9raWlx8+ZNBg4cyIoVK1Lcp0KFCuzevZuyZcsSHh6u0fJnRI6OjkyfPp1+/fop3fyOjo5UqVKFJ0+efLab//jx48pxErv5dXR0WLBgAWXLlqV169ZqM7NfvHhBTEzMd/+OXyJ54JKTPHBCiLT0tbGIRnvgQkNDyZMnT6YN4DKr75EYEX68GZOa7ua3tLSkYcOGABw4cEBtH3t7ew4fPpy2X0gIIcR/hkYDuN69ezNp0iQsLS25dOlSsh6FlMYDiX9PZkymHU1289+7d+8/vS6fEEKI70ejAZy5uTkFCxZk2rRpyraEhASZxJDByYxJIYQQInPRaAA3depUzp8/j7u7OxERETKJ4TuRGZNCiB+djNdMTsZr/rdpNIDLmzcvbdu2VVZgEN+HzJgUQgghfiwaDeAOHjxI6dKlJYBLB5pOjPjpjEltbW1ln4w6Y1IIIYT4UWg0gNuxYwejR4/m559/TnESw/bt2zV5OpGEzJgUQgghfhwazQOXNK/VpzLDJIbMnAdOiLQg44qSk3FFGZNcq8nJtZo5pUseuJw5c2rycEIIIYQQIgVaX95FCCGEEEJkJP+6B65p06asW7fuq/a1srIib968nDhx4t+eVgghhBBpTB5NJ5dRHk3/6x64jh07cvToUXr16kWxYsWSvW9sbEzdunX5888/2bdvH6ampv/2lEIIIYQQP7R/3QNnb29PgwYN6NKlC76+vrx7946IiAg+fPiAiYkJFhYWPHv2jOXLl1O9evXPTnQQQgghhBBfppFJDNu3b2f79u2YmppSpUoV8ubNS5YsWXj27Bnnz5/n3LlzsiqDSFPSzZ9cRunmF0IIoXkanYX6/PlzZSUAIYQQQgiRNmQWqhBCCCFEJiMBnBBCCCFEJiMBnBBCCCFEJiMBnBBCCCFEJqPRSQyJdHV1KVCgALdu3SIuLi4tTpGpyYxJdTJbUgghhPg2Gu2By5IlC4GBgdy/f5/Dhw+TN29eAMaNG4eXl5cmTyWEEEII8cPSaADn6+tL6dKlsbe3JyoqStm+f/9+HB0dNXkqIYQQQogflkYfoTZq1IjOnTvz999/q22/fPkyP/30kyZPJYQQQgjxw9JoD5yZmVmKS2UZGhr+o5UY3NzcCA0NJTw8nJ07d/LLL7+kum/79u3ZvHkzN27c4MaNG6xdu/az+wshhBBCZFYaDeDOnDlD/fr1ldeJQVv79u05efLkNx3L0dERPz8/JkyYQO3atQkLC2PVqlWYm5unuH+1atVYu3YtDg4ONGjQgPDwcFavXo2lpeU//0JCCCGEEBmQRh+hjh49mpUrV1K8eHG0tbXx8PCgePHiVKpUCXt7+286Vvfu3Vm8eDFLly4FoF+/ftSvX5+2bdsSGBiYbP+uXbuqvfby8sLOzg5ra2tWrFjxz7+UEEIIIUQGo9EeuOPHj1OzZk20tbW5dOkStWrV4unTpzRo0ICzZ89+9XF0dXUpV64c+/fvV7YlJCSwf/9+KlWq9FXHMDQ0REdHhxcvXqS6j56eHsbGxso/IyOjry6jEEIIIUR60XgeuNu3b9OnT59/dQwzMzN0dHSIiIhQ2x4REUHRokW/6hjDhw/n0aNHakHgp3r37s3AgQP/VVmFEEIIIb63NEnka25ujrm5OVpa6h18Fy9eTIvTJePl5UXTpk2xt7fnw4cPqe43ZcoUZs6cqbw2MjIiLCzsexRRCCGEEOIf02gAV65cOaZPn06xYsVQqVRq7yUkJGBhYfFVx3n27BmxsbHJ9rewsEjWK/epHj164OXlRbNmzb4YMEZHRxMdHf1VZRJCCCGEyCg0GsBNnTqVGzdu4OXlRURExD9KHQIQExPD2bNnsba2ZuvWrQCoVCqsra0JDg5O9XO9evWib9++ODk5cebMmX90biGEEEKIjE6jAVzBggVxdXXl1q1b//pYM2bMYPr06Zw5c4bTp0/j4eGBoaGhMit1xowZPHz4ED8/PwA8PT3x8fHBw8ODu3fvKr13b9++5e3bt/+6PEIIIYQQGYVGA7gDBw5QunRpjQRw69evx9zcHB8fHywsLAgLC8PZ2VlJFJwnTx7i4+OV/Tt27Ii+vj4LFixQO46/vz/jx4//1+URQgghhMgoNBrAeXl5MX36dEqUKMHly5eJiYlRe3/79u3fdLzg4OBUH5k6ODiova5QocK3FVYIIYQQIpPSaABXqVIlKleuTN26dZO99y2TGIQQQgghROo0GsCNGzeOVatWMXHixBTXRBVCCCGEEP+eRldiMDU1ZebMmRK8CSGEEEKkIY0GcJs3b6Z69eqaPKQQQgghhPiERh+h3rhxA19fX6pUqcLFixeJjY1Ve3/27NmaPJ0QQgghxA9JowFcu3btePv2LVWrVqVq1apq7yUkJEgAJ4QQQgihARoN4H755RdNHk4IIYQQQqRAo2PghBBCCCFE2vvXPXB+fn6MHTuWd+/eKctapcbX1/ffnk4IIYQQ4of3rwO4MmXKoKOjo/y3EEIIIYRIW/86gHN0dEzxv4UQQgghRNrQ6Bi4qVOnYmRklGy7oaEhU6dO1eSphBBCCCF+WBoN4Fq1aoWBgUGy7QYGBrRs2VKTpxJCCCGE+GFpJI2IsbExACqVCiMjIz58+KC8p6WlRb169Xj69KkmTiWEEEII8cPTSAB38+ZNEhISSEhI4MSJE8neT0hIwN/fXxOnEkIIIYT44WkkgHNwcEClUrF+/XpcXV158eKF8l50dDT379/n0aNHmjiVEEIIIcQPTyMB3JEjRwCoUKEC9+/f18QhhRBCCCFEKjQ6iUGCNyGEEEKItCdLaQkhhBBCZDISwAkhhBBCZDISwAkhhBBCZDISwAkhhBBCZDIamYWaKGfOnIwaNQpra2vMzc1RqVRq71tYWGjydEIIIYQQPySNBnBBQUHkzZuXiRMn8vjxYxISEjR5eCGEEEIIgYYDuCpVqtC4cWPCwsI0eVghhBBCCJGERsfAhYeHJ3tsKoQQQgghNEujAdzgwYMZNmwY+fLl0+RhhRBCCCFEEhp9hDp37lyyZMnCqVOneP/+PTExMWrvFylSRJOnE0IIIYT4IWk0gBsyZIgmDyeEEEIIIVKg0QBu+fLlmjycEEIIIYRIgUYDOAAtLS0aN25MsWLFALh8+TLbtm0jPj5e06cSQgghhPghaTSA++mnn1i+fDmWlpZcv34dAC8vLx48eECrVq24ffu2Jk8nhBBCCPFD0ugs1LFjx3L79m3Kli1L7dq1qV27NuXKlePOnTuMHTtWk6cSQgghhPhhabQHrmrVqtja2vLy5Utl24sXLxg1ahRbt27V5KmEEEIIIX5YGu2Bi46OxsjIKNn2rFmzJkspIoQQQggh/hmNBnA7d+5k8uTJ/Prrr8q2ihUrMmnSJLZv367JUwkhhBBC/LA0+gjVx8eHGTNmsH37dqXHTUdHh+3btzNo0CBNnkoIIYQQ4oel0R64169f065dOypXrkzHjh3p2LEjlStXpkOHDkRGRmryVEIIIT7h5uZGaGgo4eHh7Ny5k19++eWz+9vb23Ps2DHCw8M5ePAgdevWVXs/Z86cBAUFceHCBe7du8fKlSspVKhQWn4FIcRX0mgAl+jmzZvs2LGDHTt2cOvWrbQ4hRBCiCQcHR3x8/NjwoQJ1K5dm7CwMFatWoW5uXmK+1eqVIk5c+awZMkSatWqxdatW1m8eDElSpRQ9lm8eDEFChSgXbt21KpVi3v37rF27VoMDQ2/19cSQqTiXz9C9fPzY+zYsbx79w4/P7/P7uvr6/tvTyeEECIF3bt3Z/HixSxduhSAfv36Ub9+fdq2bUtgYGCy/T08PNizZw9BQUHAxzRQNjY2dO7cmf79+1O4cGEqVapE1apVuXLlCgD9+/fn0qVLNGvWjCVLlny/LyeESOZfB3BlypRBR0dH+W8hhBDfl66uLuXKlWPKlCnKtoSEBPbv30+lSpVS/EylSpWYMWOG2ra9e/fSqFEjAPT09AD48OGD2jGjo6OpUqWKBHBCpLN/HcA5Ojqm+N9CCCG+DzMzM3R0dIiIiFDbHhERQdGiRVP8jIWFBU+ePFHb9uTJEywsLAC4du0a9+7dw9fXl759+/Lu3Tu6detGnjx5yJUrV9p8ESHEV9PoGLipU6emmAfO0NCQqVOnavJUQggh0lBsbCwuLi4ULlyYmzdvcv/+fapXr86uXbtkbWshMgCNBnCtWrXCwMAg2XYDAwNatmypyVMJIYT4f8+ePSM2NlbpPUtkYWGRrFcuUUREBDlz5lTbljNnTrX9z549i42NDQULFqRkyZI4OztjamrKnTt3NP8lhBDfRCMBnLGxMcbGxqhUKoyMjJTXxsbGZM+enXr16vH06VNNnEoIIcQnYmJiOHv2LNbW1so2lUqFtbU1J0+eTPEzJ0+eVNsfwMbGJsX9IyMjefbsGYUKFaJ8+fKyNKIQGYBGEvnevHmThIQEEhISOHHiRLL3ExIS8Pf318SphBBCpGDGjBlMnz6dM2fOcPr0aTw8PDA0NFRmpc6YMYOHDx8q2QL+/PNPNm3aRPfu3dm1axdNmzalfPny9OnTRzmmvb09z5494/79+5QsWZIxY8awdetWQkJC0uMrCiGS0EgA5+DggEqlYv369bi6uvLixQvlvejoaO7fv8+jR4+++bhubm707NkTCwsLLly4gI+PD6dPn05x3+LFizNo0CDKlStH/vz5GTx4MH/++ec//k5CCJGZrF+/HnNzc3x8fLCwsCAsLAxnZ2dlokKePHnUxq6dPHkSd3d3hgwZwtChQ7l58ybt27fn8uXLyj65c+dm9OjR5MyZk8ePH7NixQomTpz43b+bECI5jQRwR44cAaBChQrcv39fE4dUklL279+fU6dO4eHhwapVq6hcuXKKj2MNDQ25ffs2GzZsYPTo0RopgxBCZCbBwcEEBwen+J6Dg0OybRs3bmTjxo2pHm/27NnMnj1bY+UTQmiORtdCzZcvH/ny5Uv1/aNHj371sb41KWVoaCihoaEADBs27BtLLoQQQgiReWg0gEvpTi4hIUH5709nSKXmnySlFEIIIYT4UWg0gPt0kWNdXV3Kli3LoEGD+OOPP776OP8kKeU/oaenh76+vvI6pRx2QgghhBAZjUYDuMjIyGTbQkJCiI6Oxs/Pjzp16mjydP9a7969GThwYHoXQwghhBDim2g0kW9qnjx5QpEiRb56/3+SlPKfmDJlCgULFlT+lS5dWmPHFkIIIYRIKxrtgStZsqTaa5VKRa5cufDy8iIsLOyrj5M0KWViwsjEpJSpzbD6J6Kjo4mOjtbY8YQQQgghvgeNBnD79+8nISEBlUqltv3vv//G09Pzm471rUkpdXV1KV68OPBxbJulpSWlS5fm7du33Lp1SwPfTgghhBAiY9BoAFehQgW11/Hx8Tx79owPHz5887G+NSll7ty52b9/v/K6V69e9OrVi0OHDqWY/0gIIYQQIrPSaACnqSS+ib4lKeW9e/cwMzPT6PmFEEIIITIijU5iGDt2LO7u7sm2d+7c+ZvSiAghhBBCiNRpNICzs7Pj+PHjybafOHECe3t7TZ5KCCGEEOKHpdFHqDly5OD169fJtkdGRmJqaqrJUwkhRKZl3GVRehchQ4mc0yG9iyBEpqPRHrhbt26lmKy3bt263LlzR5OnEkIIIYT4YWm0B27GjBn4+/tjZmbGwYMHAbC2tqZ79+4MGTJEk6cSQgghhPhhaTSAW7p0Kfr6+vTt25f+/fsDcPfuXby9vVmxYoUmTyWEEEII8cPSaAAHMH/+fObPn4+ZmRlRUVG8fftW06cQQgghhPihaXwtVG1tbWrWrEmTJk2UFRly585N1qxZNX0qIYQQQogfkkZ74PLmzcuqVavIkycP+vr6hISE8ObNGzw9PdHT01MeqwohhBBCiH9O44l8z5w5Q+HChYmKilK2b9myBWtra02eSgghhBDih6XRHrgqVarQsGFDYmJi1LbfvXsXS0tLTZ5KCCGEEOKHpdEeOC0tLbS1tZNtt7Ky4s2bN5o8lRBCCCHED0ujAdy+ffvw8PBQXickJJA1a1Z8fHzYvXu3Jk8lhBBCCPHD0ugj1GHDhrFq1SqOHDmCvr4+s2fPplChQjx//pwuXbpo8lRCCCGEED8sjQZwDx48wNramqZNm1KqVCmMjIxYsmQJq1evVpvUIIQQQggh/jmNBnBmZmY8e/aM1atXs3r1arX3fv75Zy5duqTJ0wkhhBBC/JA0Ogbu4MGD1KtXL9n2Hj16sGvXLk2eSgghhBDih6XRAG7mzJksWLCAiRMnYmBggKWlJevWraNXr15qkxuEEEIIIcQ/p9FHqNOmTSMkJISZM2dy4MABcuTIwalTp7C2tiYiIkKTpxJCCCGE+GFpfC3UW7ducenSJfLnz4+xsTHr16+X4E0IIYQQQoM0GsD99ttvHDhwgEKFCmFtbU3//v0ZN24cwcHBZM+eXZOnEkIIIYT4YWk0gFu/fj3r16/H1taWq1evsmTJEmxsbMibNy+HDh3S5KmEEEIIIX5YGh0D16JFC44cOaK27fbt2zRs2JC+fftq8lRCCCGEED8sjfbAfRq8JUpISGDSpEmaPJUQQgghxA9LIwHc8uXLMTY2Vl57eXmRLVs25XWOHDlSDe6EEEIIIcS30UgAV7t2bfT19ZXXffr0IUeOHMprHR0dihQpoolTCSGEEEL88DQSwKlUqs++FkIIIYQQmqPxPHBCCCGEECJtaSSAS0hIICEhIdk2IYQQQgiheRpJI6JSqQgKCiI6OhoAfX19Jk2axLt37wDQ09PTxGmEEEIIIQQaCuCWL1+u9nrVqlXJ9lmxYoUmTiWEEEII8cPTSADXq1cvTRxGCCGEEEJ8BZnEIIQQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyUgAJ4QQQgiRyWToAM7NzY3Q0FDCw8PZuXMnv/zyy2f3t7e359ixY4SHh3Pw4EHq1q37nUoqhBBCCPH9ZNgAztHRET8/PyZMmEDt2rUJCwtj1apVmJubp7h/pUqVmDNnDkuWLKFWrVps3bqVxYsXU6JEie9cciGEEEKItJVhA7ju3buzePFili5dypUrV+jXrx/v37+nbdu2Ke7v4eHBnj17CAoK4urVq4wdO5Zz587RuXPn71xyIYQQQoi0lSEDOF1dXcqVK8f+/fuVbQkJCezfv59KlSql+JlKlSqp7Q+wd+/eVPcXQgghhMisdNK7ACkxMzNDR0eHiIgIte0REREULVo0xc9YWFjw5MkTtW1PnjzBwsIi1fPo6emhr6+vvDYyMlL737RipJ8hqz39GBv/60NInaZA6jVtSL1qntRp2pB6TRsaqNfP+doY5If+f6Z3794MHDgw2fawsLB0KM0PbOTt9C7Bf5PUa9qQetU8qdO0IfWaNr5TvRoZGREZGZnq+xkygHv27BmxsbHJes8sLCyS9colioiIIGfOnGrbcubMmer+AFOmTGHmzJlq23LkyMGLFy/+YckzDyMjI8LCwihdujRv3rxJ7+L8Z0i9ap7UadqQek0bUq+a9yPWqZGREQ8fPvzsPhkygIuJieHs2bNYW1uzdetWAFQqFdbW1gQHB6f4mZMnT2Jtbc2ff/6pbLOxseHkyZOpnic6Opro6Gi1bZ+Ldv+L3rx588N95+9B6lXzpE7ThtRr2pB61bwfqU6/5ntmyEkMADNmzKB9+/a0atWKYsWKMXHiRAwNDVm6dKnyvq+vr7L/n3/+SZ06dejevTtFixZlwIABlC9fPtWATwghhBAis8qQPXAA69evx9zcHB8fHywsLAgLC8PZ2VmZqJAnTx7i4+OV/U+ePIm7uztDhgxh6NCh3Lx5k/bt23P58uX0+gpCCCGEEGkiwwZwAMHBwan2oDk4OCTbtnHjRjZu3JjWxfpP+PDhA/7+/nz48CG9i/KfIvWqeVKnaUPqNW1IvWqe1GnKVKampgnpXQghhBBCCPH1MuwYOCGEEEIIkTIJ4IQQQgghMhkJ4IQQQgghMhkJ4IQQQgghMhkJ4P5DVCpVehdBiK8i16oQQvw7GTqNiPh6KpWKhISPE4rr1KnD/fv3uX79OnFxcelcsszNzs6OQoUKoa2tzaZNm7h27Vp6FynTS3qtdujQgadPn7J3716ioqLSuWSZW9J6FZqTtF6NjY1/mJUA0pJcq5ohAdx/ROIfw9ChQ3FycmLUqFE8ePBAGpt/YdiwYTg5OXHmzBmqV69OpUqVaNeunQTF/1LitTp8+HCcnZ0JDAzEwMBAArh/IekP4u+//46hoSGXLl3i4cOH8kP5LySt1z59+lCoUCHGjx/PvXv30rlkmVfSOnVwcMDKygp9fX327dvH2bNn07l0mYsEcP8h/fr1o02bNri6unL+/Hnev3+f3kXKtPr160fLli1p3bo1586do0SJEuzcuZPcuXMTHh6e3sXL9Nzd3WndujXNmzfnwoULgNyV/xuJ9TZy5EiaN2+OsbExV65cYfXq1cybN4/Y2Nh0LmHm9OnNxtixY4mJiUnnUmVun9bp/v37KVy4ME2bNmXZsmXMmjUrnUuYeUgA9x+RPXt2atasib+/PydOnCB37tyULVsWJycnrl69yvr164mIiEjvYmYKJUuWpFKlSnh7e3Pu3DkAXr16xdWrV/Hw8EBLS4vQ0FDWrFmTziXNPD4NzkqXLs3ChQu5cOECBQoUoEKFCri7u3P16lV27tzJ1q1b07G0mVPVqlWpWrUqHTt25MWLF/Ts2ZOmTZtiZGTE1KlTJYj7hxo0aICzszNt2rRReoiMjIwwNzfnxYsXvHr1Kp1LmPnY29vTrFkzpU6bN29OUFAQ9+/fT++iZSoSwGVSn/4gamtrY2pqiqmpKXZ2dtjZ2WFlZYWhoSEVKlQgZ86cjBkzRno4vkJ4eDiLFi3i2LFjwMe6XrNmDQkJCWhpaVGiRAmqVasGIEHcV9DX11eWwKlVqxb79u3D3NycsmXLcu/ePVq0aEF0dDQ3btygWLFimJiYsGfPHlk25xs0btyYevXqcejQIU6ePAmgrAtdv359EhISmDZtmgRxX+HTttXU1JRr165x9uxZSpUqha2tLa1atUJXV5c9e/bg7++vrNEtvk6+fPkIDQ3l7NmzODg4MHHiRAYNGsTmzZvJkiUL+fPn58qVK+ldzAxPZqFmQkkbmNq1a2Npacnz589Zt24drq6uBAUFce/ePcaNG0ft2rW5efMmJiYmErx9pVevXrFr1y6eP38OQKtWrXj8+DF2dnYMHTqUFi1aEBsbS82aNdO5pBlfw4YNWbBgAQCjR49m4sSJ6Onp4enpydu3b+nZsyf79+9n7Nix9OrViyVLlmBqaoqWljRNX8vQ0JCOHTvSvHlzihcvrmx/+/Yto0eP5vTp09StW5fBgwdLvX5BwYIFlXaye/fuVKhQgfv371OtWjVmzZrF8uXLKVq0KNOmTWPmzJk0bNgQU1PTdC51xpbSjPOsWbNy//59KlasyNSpUxk1apTSTjg4OGBra4uhoeF3LmnmIz1wmdCnExbGjh3L2rVrmTRpEps3byYmJoabN28q++fIkUO6pr+gQoUK5MiRg/DwcGXyh5aWFvHx8axevZpVq1YRGxurbLt69Spv375N72JnePfv3+f333/n0KFD5MmTh0aNGhEdHc3Tp09p0qQJJiYmvHjxAvjYi+zg4EB4eLiM3/wG7969o2vXrowePZoKFSrg4uLCwoULgY9B3B9//MGECRPInj078fHx6VzajKtUqVKEhITQuXNnfvvtN1q2bEmDBg0IDQ2lc+fO1K1bFz8/Pw4cOMCjR48wNTWlVatWGBkZpXfRM6yknQ1Vq1bl8uXLPH/+nIMHD7Jx40Y8PDxwc3Nj48aNAGTJkoVmzZpx48YN3r17l55FzxRkMftMytvbm06dOtGhQwcuX76cbLZp9uzZKVy4MP379ydfvnzY2NjI7MlUDB8+HEdHRwwNDXn58iWPHj2ib9++3LhxI8WB9VZWVixevJjFixcrd40idfPmzcPOzo6DBw/SokWLZEGEkZER9evXp0WLFuTLl49atWrJo75UJL0ec+fOzdu3b9HV1eX58+dYWFjg7++Pubk5y5cv56+//lI+Z2BgwIcPH6QXPgWWlpY8fPgQAE9PT7y9vYmLi6NRo0ZcvHhRqfPEmzctLS309fVZsGABhoaG2NvbS71+wZAhQ6hXrx4LFy5k6dKlfPjwgR49ejB48GCGDh1KSEgI2bJlY8iQIeTMmZO6devK79VXkB64TChHjhzUrFmT4cOHc/LkSSwsLChWrBgtWrQgNDSUkJAQChYsyB9//MHz58+pVasWcXFxSgMk/qd58+a0a9eO9u3bc+vWLX777Tfatm3Lrl27aNasGWfOnFHqLXHg8uLFi7l+/boEb19p06ZNbN26FT8/PxYuXEiPHj14/fq18r6JiQmVK1cmOjpaudHQ1taWBjwFiYGCt7c39evXJ3v27Lx+/ZoJEyawY8cOBg4ciL+/P61atSIhIYGlS5cCKClaZKavuqlTp1K+fHnc3Ny4du0ajx49wsDAgPj4eEqUKMHFixeV+oqPj0dPT49OnTrRuHFjDA0NsbW1JSEhQer1MwYNGoSLiwsdOnTg4sWLytjWhQsXoq+vz4gRI3jz5g1Pnjzh6dOn1KtXT36vvpL0wGVCuXLlIiQkhICAAG7cuIGTkxOFChXCyMgILS0t5s2bx5w5c6hYsSKnTp0iISFBfhBT4enpScWKFenQoYOyLV++fIwYMYLatWtTv359rl27hr6+Pp6enjRo0IBbt27RuXNnQH4QP5X0OjMxMeHNmzdKb1qFChVYvnw5J06coHv37kqvcdOmTdm9e7fyWhruz+vfvz8eHh54e3tjYmJCmTJlaN++PX379mXJkiXkzp2bP/74g5IlSzJ8+HB27tyZ3kXOsPLmzcuOHTu4cuUKXl5e3Lt3DwsLC1q3bs3gwYPp06ePEgQD6OnpUaVKFWrVqsXo0aPlZuMTtWrV4vTp08rM3MKFCzNnzhyGDx/OwYMHMTMzw8rKikaNGrF//36OHTvGTz/9hJmZGZGRkVy9elV+r76BBHAZXGoBwsCBA3F3d0dHR4d58+YREhLC/v37+euvvwgPD2fAgAFfPIb4+GPo6upKuXLl1BqMPHnyMH78eHLmzEnLli158eIF+fPnp3LlyqxatQqQek2qTp06hIaGKhM/+vXrR7Vq1TAxMWHKlCkcO3aMiIgIypcvz/Llyzlz5gwzZsygR48e5MiRQ+nJEOo+TXCcLVs2li1bxrJly1iyZAnw8Trs06cPgwYNonHjxkoaoU6dOjFu3DgJhlOho6NDbGwslpaW7N27l+vXr9O7d29u3LgBfGxj+/bti6enJytWrADgjz/+YPXq1YSGhgJys5FUhw4d8PPzY/jw4axZs4bIyEisrKzYuXMnY8aM4dy5c3Tp0oVff/0VgOLFi+Ps7My+ffvUjiPt6teTKUkZWNILuXTp0lSpUoUiRYoA4O/vT/PmzalXrx4jR45k//79wMcG/9mzZ2rHkT+G1O3bt48nT57QtWtXDAwMlO3h4eHMmzcPIyMjChUqBMDdu3cleEtBu3btmD9/Pk2bNkVXV5cOHTrQtWtX9uzZw4MHDxg1ahSdOnXCysqKM2fO4ODgQIkSJRg9ejTZsmWjUaNGUpcpWLNmDf369VPbZmhoSIkSJYiOjla2JSQkMGPGDEJCQrC3t0dHR4dHjx4xZswYZcyWUKdSqZSe4YcPH1KnTh2KFCnCxIkTKVq0KPCxjZ00aRJBQUFMmDCBbdu2Ubt2bSU3JCDBWxKLFi1i5cqVdOvWjRYtWpA9e3YiIiLYvHkzAwcOZMeOHcrM6OrVq3PkyBGqV6+e7DjSFnw96YHLBIYOHUrDhg3JnTs358+fJywsDF9fX+VCNzIyokiRInh7e5M/f36ZsPAZnwZeWlpaBAQEUKZMGWbOnMmmTZuUMRpGRkacPHmSkSNHsnz58vQqcqYwduxY6tWrx5QpUyhVqhR79uxh9+7dwMcliJydndm0aRMLFy4kPDxcyfUkj0xSV7ZsWS5fvkx0dLTSWwQfJ4UYGBjQu3dvteTcCxYs4M2bN/Ts2TO9ipzpVK5cmfDwcO7fv4+VlRV79uzhypUreHt7K+sed+zYkfr16/P06VP69OmjNhtdfJS0PiZOnIiNjQ3Tp09nyZIlGBgYKB0PiT2XOjo6bNy4kbVr1xIcHJxu5c7s5NYsg+vTpw9t2rRh4MCBlCtXjlu3btG+fXsCAwOV/DqVK1fGz88PPT09tQkLQp2Ojo5a0Gtqakp8fDze3t48fvyYHj164OLiotSdiYkJr169kiSdn6GtrQ18HKgcEhJCnz59sLOzU9tn8uTJrFy5Ejs7O9q3b0/BggV5//49V65cUQaAS/CmTqVSce7cOaKjo+nZsycLFixQ0lXs3r0bU1NTunXrhomJCfBxbFaOHDl4/PhxOpY6c/n999+ZP38+bdq0wcrKigcPHlCnTh2KFy/OhAkTKFasGADz58+nS5cu9OrVi9jYWLS1tSV4+0TSnt7+/fsTEhJCz549adeuHSqVitDQUEJDQ8mSJQslSpRg0aJFZMmShfnz56dzyTM3+ZXPQKytrdVeFy9eHFtbW3r06MGhQ4eoWLEizZo1Y/v27VSuXJlJkyahUqnYs2cPo0ePpmXLltLAfMLQ0JCGDRsCKD0YU6dOZd26daxduxYXFxdiYmJwcXEhLCyM1q1bc+jQISZPnsy6deu4ceMGe/bsSc+vkGF9Gnj179+fjRs3Ym5uzu+//64EF/AxiFu+fDmdO3emRo0aaseRRybJJdaJlpYWZ86coWbNmowfPx4tLS2WLl3Kjh07qF69Ojt27GDWrFls3rwZc3NzxowZk84lzzyOHj3K0qVLsbOzo3Xr1mpBXLFixRgzZgwlS5YE4M2bN8rn5Gbjf5Im6U36m5MYxPXo0YPmzZuTLVs2AJo0aYKvry9Zs2ZVm20q/hl5hJpBODg4EBwcjJeXl9qspzZt2rBz506KFCnC3LlzGTt2LEuWLGHhwoXY2tqye/du2rdvrzT4MjZLXYcOHZg0aZJSrxMmTKBKlSosXryYwoUL06lTJwICAhg7dixaWlpYW1tTp04dtLW1iYiIYMqUKYDU6+c0atSI2NhYZbbj2LFjsbW1Zfr06axatUotZYizszOrV6+WG4xUVK1aFZVKxeHDh/Hz8+PevXvMnj2bKlWqsGzZMnbu3EnXrl1JSEigRo0aVKtWjbx58xIeHs748eMl/cJX0NXVVVuQftCgQdjZ2bFmzRqWLl3Kw4cPsbKy4uzZswQHBzNo0KB0LG3GlbRNtLa2xsLCgkePHnH58mWePn0KwKRJk7C2tmbGjBn89ddfmJqaUqpUKfbt20d8fLwMnfiXJA9cBrFhwwaKFCmi9KolJuFMDOb69evHtm3blNlQV65cIVu2bNy7d0/tOBJkqFuzZg0WFhZMmTKFhIQEHjx4QLdu3QgLCwPg7NmzBAQEAB8Dj5CQEEJCQtSOIcGbuqT1UbZsWYYPH861a9eIjIzk6NGjDBo0CB0dHbp16wagFsStXLkSkNl7KcmVK5cyacHFxQU7Ozvq1KkDwLFjx2jdujXLli1j1qxZ9OzZk4MHD3Lw4EG1Y8gP4ue5urqiq6vLsmXLlF61sWPHolKp6NSpE/CxzX3w4AE///yzMqtaJJfYBgwbNoyWLVvy6NEj8uTJw/bt21m+fDnHjh2jX79+TJw4ka5du2JoaEhwcLDyREOGTvx7EsBlIJMmTVIG1QNqmdTz5cuHvr4+MTExqFQqihQpwrp161i0aBEgQUZq3r17x8SJE9HW1iYwMJC3b9+qBWiJAfLEiROJi4tj/PjxyY4h9aousT58fHwwNzcHPqYR0dPTQ1dXlwMHDuDt7c348eNxd3fH0NCQefPmqS09JsFbco8fP8bf359Zs2ZRvXp1+vTpw8WLF4GPf9+JQdzSpUuZMmUKPj4+yVZgkR/Ez7O2tqZcuXK8e/eODRs2KEHcmDFj+Pnnn2nXrh3GxsZMnz5dGfsqNxvqChQowJ07dwDo0aMHTk5OuLq6cvLkSfr370/v3r0xMTFBW1ubw4cP079/f4KDg/n111+ZPn26chxpV/89CeDS2aeB14QJE1CpVMmCuL1799K+fXs2bNiArq4u2bNnV5LJgvwxfKpZs2YULVqUHDlyMGzYMKZPn05kZCTDhw+nUqVKymwo+F8QFxgYyIULF9iyZUt6FTvTcHd3x8PDg1atWjF16lRKlizJkCFD6Ny5M/Hx8Rw6dIgBAwYwa9YsypcvL+vGfqU3b94QHh7Ow4cPsbe35969exw8eFBZyunYsWO0adOGTZs2cevWLSZOnJjeRc5UOnXqRGBgIJ6enmhpabF+/XolCL59+zaFCxfGzMxMbeKSBG//4+LiQps2bXBxcSE2NpYyZcowduxYTp48SaNGjejWrRtLly6lTp069OzZk4SEBI4cOULnzp1TXNRe/DsSwKWjpMGbk5MTOjo6rFixgvHjxxMfH09AQAAqlYolS5awbt06EhIS+OWXX3j37h2DBw9WZv5IA6PO19eX+vXrs2nTJvbu3Ut0dDTR0dEsXLiQLFmy8Mcff/DmzRu1sYZLly7l1q1bHD16NB1LnjG1adNGra4AKlasyLZt2zh+/DjwMUdeVFQU06ZNw9PTE4BDhw7RtWtXGaT8GZ/ewF26dAk7Ozusra3p1q0bXl5eJCQkcOjQIeXv/NixY9SsWZMrV66kV7EzvKT1mj17drS0tHj16hXx8fF4eXkRFBREz5490dLSYvv27Tx+/JicOXMyYMAADh06lM6lz5g6dOjAxIkTcXFx4dGjR2hrazN//nyuXr1K2bJl+eOPP/D392f27Nl0794db29v9PX18fPzIzQ0VJYcSwMSwKWjxAt5xIgRNG3alOnTp5M7d24ePHig3FknjolbvHgx8+fPV5t2LeNdkuvTpw/t2rWjVatWnD17Vi24ffv2LTNmzEClUhEYGAigFpgkBm/SyPxPYub0ZcuWqU2UiYqKwtjYWHmdkJBASEgIM2fOxMfHh1evXhEdHc2JEyeIj4+XOk1FYp04OjqSLVs23rx5w9q1azlw4AD6+vp06tRJCTQOHDjAkiVL2L59u7IKg7QBySWtk379+lG9enVKlizJsmXL2L9/P/v27aNnz54EBATQuXNnunbtyvv378mSJQvdu3cHpA34VLt27Rg/fjwdOnRg27ZtwMfH9WFhYbx9+xYXFxeuXr2qDOmJjY3l7NmzXLlyhTNnzijHkTrVLAng0lnr1q1xdnamffv2nDp1Su29xCDO39+fLFmyMHv2bLX3peFWV6BAAZo0acLw4cPVHpEm9f79e2bMmAHAlClTlIG1SUkj8z/Lly9n7ty5JCQkUKVKFY4dO0ZCQgInTpwgICCAmjVrKquAAERGRnLs2DEKFy6Mo6MjJ06cAKROP2fUqFG0bt2ap0+fYmhoSNOmTWnfvj27du0CPvZ8TJ06lZcvX5ItWzZcXV2Vz0ob8D/lypXj7NmzSp0MHjwYFxcXhg4dSnx8PO7u7lSsWJGsWbOyefNm+vbtS/PmzcmXLx+6uroEBATIU40U2NjYMHnyZHr06KEEb/AxofTmzZtZu3YthoaGGBkZkS9fPq5du0aNGjVYuXKlcoMsAXHakAAunf3yyy/s3LlTLXhLerFPnDiR7NmzY2dnlyyAE+osLS0pWLBgskD4Ux8+fGDixIlky5aNChUqfKfSZU6J44MS85CtX79eSWVTsWJFFi1aRLdu3Thz5gyvX7/G1taWVatWoa2tzbRp05g1axZ3795N52+RcZmamlK8eHHs7Ox4/vw55cuXJyAggDVr1tC8eXN27drFs2fPKFasGHny5GHKlCmygHoKNm7cSFhYGOfPnyc+Pp5atWphb29P27Zt+fvvv6lSpQply5bl4sWL9OjRg+joaHbu3MmaNWvUjiPBW3IPHz7k+fPnNG7cmM2bN/Pu3TuCg4MpV64cw4YNA+Dvv/+madOmBAcHY2BgQFxcnJIxAeQGLq1IAJfOTE1N1XISwceLXVdXl2rVqnHgwAF8fX3TqXSZi6Gh4RfHW5UpU4Z27doxZMgQRo8erbampEjdhQsX2L17N9bW1sps3d69exMVFcWsWbOUQd8xMTGsW7eO8uXLc/PmTWVZMpGcu7s7Tk5O3L17l3v37vH27Vv27NlDz549mT59OqtXr6ZFixacPn2a06dPK5/T0tKS4C0Jd3d3fvrpJ5o3b058fDy6urrcv3+flStX8vfff1O3bl1mzpxJv379uHz5MsuWLaNv374YGRmxdu1atWNJ8JbclStXsLe3Z+3atcyePZuEhAQKFCiAvb094eHhAOzcuZO4uDiKFCmCgYEBQUFBkpPwO5AALp3dunWLtm3bkidPHuWPASBHjhy0adOGmJgYDh8+nI4lzDxevHiBkZERVatWVdYx/NRvv/1GbGyssiqDSO7Txx16eno8ffqUCRMm0Lt3b+rXr098fDwTJ07Ex8eHrVu3kiNHDnR0dFi3bh3x8fE4OjoSGRlJVFRUOn6TjEtHR4eoqChMTU0xMjJSZunGxcVx8OBBunfvztSpU9mzZ4+SCy6R/CCqMzY25s6dO8TExODn58fNmzdZvHgxc+bMwcDAAA8PD2bNmqU8zrt8+TK5c+fm119/TRbAieRUKhVXrlyhefPmLFy4kEKFClGrVi3l9yoxSNuzZ4/aqjUSvKU9mR6Wzvz9/bl//z4rVqygZMmS5MqVi9y5czNt2jTy5s0rsyK/QWhoKKtXr2b06NFUq1Yt2fsWFhY4Ojry4MGDdChd5pA0eHNzc2Py5MmsXr1auZmYOHEihw8fpn79+gwYMACAAwcOsGHDBtasWUPhwoUJDAykZcuWeHp68urVq/T8OhnGpykUYmNjWbduHePGjcPS0pKgoCDlvcQgztvbm4cPH0r6hS/YvHkzFSpUYPfu3XTt2pVjx44RGxtLZGQkenp65M+fn5cvXwKQLVs2Hj58yLhx4xg6dGj6FjyDS3yakdgeXL58mQ4dOvDw4UMGDx6MqakpkPoNhQRvaU8CuDSWtPHNlStXsvdjYmLo1KkTT58+Zd26dezevZtly5ZhZmaGvb29MoNPfJ3g4GDOnz/P8uXLcXZ2xsrKChMTE2xsbFi7di0vXrxQSyYp1CU21sOHD6dPnz48e/aMPXv2EBgYyNChQ3nz5g1Tpkzh6NGj1KpVi1GjRimfNTQ0JE+ePGTLlg0HBwclCe2PLmlQXLFiRRo2bEiFChVQqVSsWrWKgQMHUrt2bWVmNHz88du1axft2rVT0i+I5BJ7h/bv30+5cuXYsmULV69eVd7X19fnxo0bWFtb07VrV4KDg8mfPz/r16+Xev2MxN6zMmXKsHbtWnR0Pj6su3LlCs7OzpQtW5bp06eTI0eOdC7pj03WQv1OfH19sbKyYuDAgWprQyZla2tL1qxZiYqKYvv27bJW3D9UqVIlPDw8cHBw4NmzZ+jo6PDgwQPOnTtHz549AZkV9TlVqlRh+vTpdO7cmdDQUMqUKcPevXvp3r07q1atAsDExIQRI0aQkJBAnz59lM9qa2ujq6srj05TMGzYMBwdHXn9+jX6+vrcvn2b8ePHc/78eZo1a8awYcPYvXs3vXv3Tu+iZipmZmYMGzaM0NBQRo8ezerVqxkxYoTS69awYUPat29P3rx5efDgAe3atSM2NlbagFQkBm8lSpRgzZo17Nq1K9k1Wbx4cVauXMnjx49p3rx5shVBxPchY+C+g+rVq1OvXj08PT1TDN4SG5IdO3aobZfByin7UsN78uRJTp48yYIFC8iTJw9xcXFcu3aNs2fPftXnf3RZsmTh3r17hIaG4ujoSGBgIAMGDGDVqlUYGxtTtGhRTp8+ja+vr9JwJ9ZpXFycXLMpcHV1pWXLlnTq1Injx48zZMgQ3N3dMTExITY2lk2bNpGQkMCMGTO4c+cOkydPTu8iZ1if/v0+e/aMPn36EB8fz+3bt/nrr79QqVSMGjWKZ8+esW3bNg4fPkxCQoJyvcqNccoSg7eff/6Z9evXs2LFCoYNG4aWlhbTp0/H09OTmJgYrly5Qtu2bfHx8VGWIxPfnwRwaczZ2ZlffvmFI0eOcObMmRQHdqYWTMgYAnUlS5bk9u3bvHv37qv2Ty2jugRvn2dgYIClpSXOzs6MGzeOESNGKAmkq1WrRuvWrRk8eLAyiFkC4tQl1s0vv/zC0qVLOX78OI0aNaJz584MGzaMffv2kSVLFnR0dNi4cSNPnz5Vy6sn1CW91lxdXSlcuDD58+dnxYoVnD59mpCQEFq1aqUknh41ahTPnz9Xu3GWRdRT9mnwtnLlSoYNG4ZKpWL79u1oaWmhq6urZE0ICwujXbt2gLQB6UXGwKWx5s2b4+bmRunSpdHT05Og7B/q0aMHe/bsYdu2bdSpU4ciRYqovS9jWf6dNm3asH79egD27dvHzZs3mT59OtOnT1eCN319fdq1a0dUVJTajGlpuFNnYGAAfOzVDA0NpUqVKsycOZMRI0awcOFCtLW1cXJyolatWnz48IF9+/YpyWRFcknHaA4cOJA3b97w9u1bRowYQf/+/TE0NOTgwYO0bNmSpk2bEhAQoKwY8ukxxP+oVColeFu7di0rV67E19cXlUrF7t27efHiBY6OjqnePEudpg/pgdOglO5CWrZsSWBgIPXr16d169asWrXqq3uQxEeJwdmKFSu4desW3bp1w9DQkL1797J8+XLu378vDci/FBkZiY6ODg0bNmTbtm2sWLECExMTatasyblz5zA1NaV58+ZYWlpiY2MDyF13SmrUqMHBgweBj8s4PX/+nPnz53P//n1mzZqFSqWid+/eSgJZY2NjmjZtyr59+9SOIzd6qatZsyZ2dnbKcnk1a9akWbNmHDlyhHfv3qGlpcXhw4fp1KkTvXr1kkd8XyEhIYHChQuzefNmli1bpha8PXv2DDc3N6nHDEgmMWhI0h+zUqVKkZCQgIGBgZKAc86cOZQsWZLAwEA2bdrE+/fv07O4mU6lSpVYtGgRdnZ2PH36lOrVq9OzZ0+ioqK4fv06gYGBPHv2TILjb2RiYsLLly/Jnj07U6dORVtbW3ks0rRpU5o0aUKdOnW4cOEC4eHhdO/endjYWMnxlIJcuXKxceNGnj9/TmhoKC4uLtSrV4+LFy9ibGxMUFAQlStXpnr16nz48IGsWbMSGBiIiYkJjRo1ksd6KXBzc+Pvv/9Wxq8C2NnZ0bVrVxo3boyjoyNTpkxh5MiRzJ8/H0NDQ8qUKcPZs2fVJtLIzYa6lOrDzc0NY2NjpkyZgkqlYteuXTx//pxOnTpJ8JZBSQCnYYMHD6Zhw4bo6emRJUsWtmzZwqBBg4CPKS5KlChBYGAgW7ZskWDjKyRtaIYPH46FhQVDhgzh5cuXVKhQgR07dhAREcH79+85deoU27dvVx4Fis/r27cvLVu2pF+/fhw6dAgrKysOHjzIzJkzlXV4AaysrHjy5Iky9kUGgKdMS0uLX375hdWrV6OlpUWTJk04d+4cOjo6xMbGUqlSJUaMGEHJkiV5/Pgxb968IS4ujsaNG0tQnILff/+dWbNmERISwqxZs7h06RLwcf1oJycnJk+ezOLFixk1ahTz5s0DPgZ3v//+O5MnT1ZWBxHqkraptra2PHjwgPPnz6u9v2/fPp48eULHjh0leMvAZKCFBnl6euLq6krfvn2pVasWa9asoXPnzsp6m507d+bSpUuMHj2aKlWqpHNpM7bKlSuTI0cOEhISlPFAx48fp0SJEkRGRmJubs5ff/3FkiVLKF26NFOmTMHIyAhbW9t0LnnmUbx4cQoVKkRQUBADBgygQIEC9O3blwYNGmBtba3s9/DhQ7Xl3iR4U5f4iD8+Pp7IyEgeP37MkydP8PPzQ1dXV1n14+TJkzRp0oT+/fsTGBjIhAkTaNiwIbGxsWhra0vw9omjR4/i5+dH6dKl6dq1K6VLlwZgy5YtFC1alLVr19K/f38leNPX16dNmzZkz55dgrfPSAzehg0bxsiRI6levTrZsmVTrmMnJyfOnTsnPW+ZgPTAaYiWlhazZ89m586drFy5ksaNGzN16lRGjRrFwoULMTQ0VHrcBg0ahL+/vzTYqahRowZTpkxh1apVzJw5Uy2b/6pVq9DV1aVYsWLs27ePAQMGKMsQZc2aVflv8WW5cuXCx8cHPT09Xrx4QaFChdDT0+PVq1fcvHkTf39/WXLsC37//XfgY7AxefJkoqKiGDt2LCVLlmTChAm8evUKR0dHtXr8tAdTet6SSzrbsWPHjrRu3ZrLly8zY8YMLl++jK2tLQEBARw/fpzZs2djamqKq6sruXPnplatWnKT8QX9+vXDw8ODNm3acPbs2WTrcUsve+YgAZyGZM2alaNHj+Lt7c2bN29YunQpw4cPZ8GCBejo6ODt7c3Ro0cJCQlRPiMNd+pGjRrF77//zs6dO5kzZ46SlLNWrVrMnTuXTZs24e3tLYvRf6O+ffsSHR3N9u3buX79Oj169CBXrlwsWrSIbNmy4e/vT/ny5YGPg8VlNYXUGRsbs2fPHm7dusWrV6+oW7cu9vb2hIWFoa2tTY0aNRg1ahQvX76kWbNmxMbGEhAQwMmTJ1m2bFl6Fz9T6N27N7lz56ZRo0bkzp2bNWvWEBAQwLVr16hduzZ+fn4YGxvz5MkT7ty5g7u7uzyOTkHSx6bm5uYsXLiQmTNnsnnzZqysrChUqBBOTk5cuHCB+fPnJwvoRMYks1D/gZQGgL59+5a1a9fi6upKtWrVGDx4MEuWLAHA1NSU8uXLc//+fbXPSAOTXOKd37Bhwxg4cCANGjQgISGBOXPm8OrVKy5evMjDhw958eKFBG//QExMDC4uLlSpUoWNGzcyf/58du7cycOHD5k5cya2trb06dOHn3/+mcuXL6d3cTO0yMhIGjZsyIEDBzAzM6Nv376EhYUB/1vPdNiwYYwaNYrQ0FBu3bpF/vz58fb2TueSZw49evTAy8uLjh078tdff1G9enVcXV3x8vJiypQp7N27l/3791OgQAFevnzJ8+fPAek9Skni75WVlRXPnz/HwMCAmjVr8vTpU9zd3cmXLx8vX76kTZs2ZMmSRW1ZN5FxSQ/cN0oavFlaWqKlpaXkxGrYsCETJ07k/Pnz9O3blwcPHmBubs60adPIli0bdnZ2ErR9BX19fT58+ADA9evXef78OatWrWLu3Lk8f/6cZs2aMXbsWFq3bq3M8hVfr3z58jRu3BhXV1dWrVrFnTt38PT0xM3NjWPHjqntKz+GqdPR0aFgwYLMmTOHrFmzcvXqVWbOnMnhw4eVfbS0tChcuDBt2rQhLi6OsWPHEhcXJz1EX6Ctrc2SJUu4ceOG2qLzbdq0Yfjw4ezZs4egoKBkPcQy21RdnTp1+OWXX5gwYQJjx47F1NQUb29vWrVqRdu2bSlSpAizZ89m3759HDhwgAkTJqCvr4+np2d6F118BemB+0aJjcOQIUNo2rQpWbNm5cGDB0ydOpUNGzaQI0cOevfuzfLly3n16hV6enro6Ohga2urJOiUhltd7969SUhIIDAwEC0tLT58+ICenh6bNm3i1KlT3LhxgwYNGqBSqZg9ezaHDh0iISGBIkWKSACXipo1a6JSqdQe2Sc6c+YMly9fZt26dcyaNYty5cphaGhIy5YtuXjxolrWegne1CUNEGJjY7l+/Tq1atXCysqKlStX0qtXLxISEjhy5AjwsZf92rVrjBw5UjmGtAFfFhcXR1RUFIaGhsD/6mzp0qWULVuWFi1aYGhoyKhRo7h586byOQne/idLlixUqVIFR0dHqlevTrly5bC1teX169csWbKEtWvXYmJiwvXr15XPFC9ePNlNnMi4ZBbqV0qa6b9ly5Z06NCBcePG4eHhwZ07d/D29qZr164sXbqUXr16MXfuXI4fP868efOoV6+ezDT7DG1tbYYOHYqHhwfx8fGoVCq2bdvG69evadWqFYMHD+bAgQPUr18fNzc3njx5goeHBytXrkzvomc4KpUKY2Njpk+friTcTUlUVBQXL17E1taWLVu2EBERQYECBVJcq1d8lDR4K1q0KJUqVSJr1qwYGBjw4MEDOnbsSJ48eejRowc1a9YEYNOmTfTv31/tONIGfJ2wsDAcHBwoWrSoWp09efKEW7du8fjxY27dupWOJczY3r9/z9SpU3n69ClVq1Zl+fLlXLlyBYAPHz7w9OlTrl+/TpYsWahYsSIrVqwge/bs+Pv7p3PJxdeSR6jfqFGjRpibmwOwaNEiZfvo0aOxtbWlW7du/P3338k+J3fdySX9QfTw8MDPz49hw4bRtGlTXr58mSz79/Dhw3F2dqZv377s2LEj2THE//To0YOePXvi4ODA1atXU9wn8ZpUqVTkyZOH8PBwqcuvMHjwYBwcHDA1NeX+/fssW7aMdevW8eTJE4oWLcqsWbPQ1tZGX1+fuLg4atWqJYPC/6GVK1dStGhRXF1duXfvHpGRkcydO5ctW7awYsUKQNqAz8mRIwf9+/fHwMCAKlWqsG7dOiXHY2J+wsaNG2NnZ4e5uTmtWrWSSSCZiARw3yBPnjwcO3YMAwMDxo8fz4QJE9TGCO3atYvbt2/TpUuXdC5pxufr64upqSkDBgxQfty6devGqFGjuHfvHjVr1iQyMhJQH4fl6OgoiXq/QsmSJZk5cyZLlixhzpw5X90gy4/h5/Xr149OnTrh6enJnj17WLJkCSVLllTGaEZERJA/f35q1qxJlixZmDt3LnFxcTKW8B+ysLAgICCAqlWr8vjxY1QqFSqViqpVqxIXFyfX6ydSqw8LCwvc3NxwcHBg1apVTJo0SXnvt99+Iy4ujtOnT5OQkCDXaiYiAdw30NbWpmrVqvj7+/P8+XOaN2/Ohw8flD+asWPHkitXLjp16pTeRc3QihcvzqFDh4CPvZgDBgxQGgxXV1cmTJjAoEGDCA4OVj7zaaMiDfeXTZs2jd9++43KlSund1H+E4oXL05AQABTp05lx44d2NjYsGDBAk6dOkXhwoVZtmwZ8+bNS5ZEVnozkkv691ugQAEePHjw2V5KOzs7TExM0NfXZ/78+TIR5BPZs2dXy5fZpUsXihQpgkqlYsKECTx58gQrKys6dOiAnZ0dmzdvZsKECSxfvpyrV68yePBgQNrVzEYCuFQkvZC1tLRQqVRKAFG9enWCg4M5deoUPXv25P3798TExLBt2zYuXbqEl5dXehY9U5g6dSrGxsZUr16dAwcO0KVLF6Ux7tatGyNHjmTo0KHMnj07nUua8RUoUIA7d+4orxOToBYuXJgVK1YwY8YMJVu9+OeyZcuGjY0Nu3fvpmzZssybN49x48axaNEiVq9eTeHChdm+fTvjxo1T+zEV6pK2rd7e3pQsWZJFixYREhKSLHhILaCQ4O1/hgwZgoeHB5UqVeLx48cMHTqUDh06cOzYMYoUKYK5uTnOzs6cOXMGKysrWrZsiYeHB+/evePNmzfUrl1bEnZnUjKJIRWJjYanpyfBwcFs3bqVdu3aUbRoUQ4dOqQskbVz504WL17MzJkzyZo1K/369UvnkmcO9+/fx8zMjNatW1OlShX+/PNPZcmsmTNnMmzYMPz8/OjTp086lzRjK1WqFH///TeLFy/Gzc0NQOnJiIiI4Nq1a9SqVSs9i/if8fr1a/bu3cu7d+9o1aoVW7ZsUXI93r17l/fv36OtrS3B2xckXcqpc+fOrFy5knPnzqkFaoltQWq9QRK8/c+KFSs4e/YsmzdvJm/evBgbG+Ps7Kz0th05coRVq1bxyy+/8ODBA+bOnYuDgwMjR47ExsZGmWAnMh8J4D6RdLZp//798fT05O7du9y5cwcvLy8GDx7Mr7/+yqFDh3B3d+fDhw+UKFGCiRMnUq1aNflj+EqTJk0iW7ZslC9fns6dO1O7dm1mzpypNNyzZs1iwoQJFClSJJ1LmnHZ2dlRrVo12rVrh46ODp6enhw+fJjOnTtTuHBhIiMjmTRpEjVr1qRJkybpXdz/hMRJNTly5CBLlizo6HzMxGRsbMzQoUMZMGBAehYv07C2tqZp06Y4OTkpM85z585N7dq1yZ49u5JySXzZ9evX6dWrF0+fPmXnzp38+uuvynX67NkzevXqxaFDh1i+fDkVKlTg9evXXLlyhQ0bNij1LGPeMif5C/lE0ozVlpaWdOrUiREjRuDu7s6wYcMwMjKiS5cumJubc/ToUXx8fNDR0VFLNil/DOpGjBjBggULaNasGTly5AA+1tH69ev5+eefOXr0KK6urtSrV48ZM2YoDffEiRPp0aNHehY9Q1KpVOTIkYOxY8cSHh7Ojh07cHd3p1mzZpw/f5527dqxc+dO+vXrh6mpKevXr6dGjRpyY6FBt27domzZssyePZvt27dTqlQpJede0ptAkbKEhATevn3L69evKV68OD4+PmzdupWAgAD27t2Lqamp9LJ9QdLr7Pbt23Tv3p1Tp05RunRp9PX1lX0iIyPx9PTkwIED7Ny5k6JFi6odR+o585IxcCmws7Nj3rx5RERE0KVLFyUpZ+J7AQEBODs7Exoaikqlolq1asycOZPr16/TtGnTdCx5xpN0wsKOHTv4+eefmTBhAidOnODNmzccP36cjh07EhISQrVq1ViwYAGhoaE4Ozunc8kzNl1dXU6dOoWnp2eyZL0lSpSgXr16tGvXjvfv31OqVCmioqL47bffePjwYfoUOBP41gHcvr6+5MyZk/j4ePr16ycD61ORtF6trKx48uQJpUqVYvLkybx9+5YSJUqwefNmTpw4weXLl5kzZw6+vr5s3bo1nUueOfz222+cOHECgEKFChEYGEiePHlo2LAhjx8/VvbLnj07PXr0YNy4cXKN/kdIAJcCPT09xo8fT9u2benTp48yziXRiRMn+Ouvv9TWi7OxscHf35+mTZvy4MGD713kDK1169YEBAQQFBTEs2fPsLGxIU+ePGzYsIFy5crx4sULBg4cyPv377GxsaFJkybJkp8KdXp6ehw/fhwPDw+l8f40AClatCjFixenT58+6OjoUKtWLWm4U5F0lvOX0iikFqRJ+oXkPp2wULRoUWbPns3ff/9N7dq1KVy4MHfv3uXIkSNERkZiYmLCunXrGDlyZIqriAj1Ov355585cOAAQ4YMUSZ8FSxYkBkzZpArVy4aNWqkpF9J2jbItfrf8MMHcKnddevr6xMUFEStWrXo1KkTBw8eJCEhARMTE3bs2MG0adOSBXZZsmTh/fv336vomUqnTp0YN24cvXv3Zt++fRQsWJCBAwdSunRpwsLCaNGihcyE+oJGjRpx584dLly4QN68eQkJCcHR0VFZQD1RStd04jbpIUquXr16vHr1ihMnTjBmzBjMzc1xd3f/4uck5cLXGzZsGK1bt2bgwIEcO3aMiIgItfd1dXXJnj07U6dOJUeOHDRu3Fiu0y/o1asXOjo6eHt7AzBmzBiCgoKAj0Hc9OnTMTc3l06F/7AfOoBL2gBXrFgRPT093r59y9mzZ4GPdylz587FxsaG5cuXc/v2bWrUqEH+/PmxsbGRO5hv1KVLF/744w/8/PyYNm0aenp6lChRgrt37/Ly5cv0Ll6Gpq+vz6JFi6hevTq1a9fm/v37XLx4kfr16yvL43yJBBwp27t3Lzlz5uTYsWPUqlWLJk2acPny5a/+fKFChXj8+DFv375Nw1JmXjY2NkydOpW2bdty/vx5tLS0MDc3p0CBAty+fZsnT57Qs2dPrK2tMTExoVGjRrIawBd4e3vTuXNnPD09yZo1K2XKlKFHjx788ccfypOhAgUKsHLlSi5cuCC5Sf+jfujF7JMuTO/k5MT79+/56aefmDhxIkuWLOHRo0e4ubkRFBSEm5sba9asYe/evSxYsECyq/8Dc+bMIT4+nnHjxqGlpUVgYCDnzp0DJLj4kg8fPtCnTx/GjBnDxo0b6dq1K5cuXaJhw4bkzJkTIyMjdHV1iYyMRKVSUaJECTZs2KB25y31m7LatWtz4cIFmjRpQt++fb8peOvSpQutW7emXbt2EsClQltbm8ePH/P06VOKFy9O8+bNlR73Fy9e4OzszLlz54iNjWX27NnEx8dL25pE/vz5uXv3rvI6a9as1K5dW0koDbB27VoePXqEn58f0dHRzJo1izt37uDo6Kg2Dk78t/zQARxAnz59aNOmDW5ubhw7dgxfX18GDhxIjhw5mDp1Ko8fP8bT0xOVSkWNGjWYN2+eMlhZGpiPviX4mjt3LgB//PEHcXFxSpe/BBdf9uDBA3x8fJg4cSIrV64EPqaz6Ny5M7q6umhra/P+/XtUKhWPHz/mzz//TOcSZ1yJ16xKpcLIyIjHjx/z/Plz+vTpw+3btzl27JjyfuK1+el17uLigo+PD/3795dHVJ8RGxtL7ty5mTJlChUqVGD79u1MnDiRJ0+eMGbMGEqXLs2BAwc4cOAAgLStSSxatIjXr1/Ts2dPZZuenh558+ZV651UqVTMnTuXGjVqMHLkSOLi4pg9e7YyaUl6M/+bfrhHqJ8u4TJ69GiWL1/Oli1baNy4MYGBgWzYsIH27dszZ84cpk+fzoMHD9DW1iY4OJjffvsNd3d3Dh8+nM7fJGPQ0dFhxYoVXL58mTt37hAcHKw0FJ9rNDp16oS/vz+tW7dm9+7d37PImUahQoWwtLQkZ86cPH36VJnNa25uztChQ2ndujWOjo4cO3aMbNmyKTcWKpVKSSYrPZvJJa0TOzs7Ll26xPXr1wHYtm0bOXPmpFevXhw/fly5fhNXt0jk4uLCiBEj6NWrF5s3b/7+XyIDSlqvRkZGREdHEx0dDUCTJk0oUqQI169f59ChQ7x8+ZLs2bOzYcMGRowYIRMWUpE9e3bevXtHTEwMpqamPH/+HAB/f3+qVauGq6urcu0C+Pn5UaZMGapVq0bHjh3l2vyP++ECuESJg+ebN2/Otm3bKFmyJHPnziUoKIg5c+bg5+dHly5dWLlyJSNGjOD58+fo6OiwfPly8ufPj7W1NVFRUen9NTIEOzs7smXLxuDBg7lw4QIHDx7kzz//JDo6+rNBnLW1tXLXLdS1atVKGaRsbm5OtmzZOHDgAHPnzmXr1q2Ym5sTGBjIL7/8grOzM+fPnwf4bI+RUDd8+HCaNGnCihUrWLRokTKwftu2bZiamjJgwABOnz7NzJkzefz4sbLKSmLw5unpyaZNm9LzK2QYSa+1bt26Ua9ePbS0tLh//77Se6Sjo0NsbCw6OjpkzZqVWbNmkT17dpo0aSK9QylI2na6u7vToUMH3N3duXjxIlWqVMHb25u3b98ybNgwbt++jb6+PsHBwSxatAhbW1vKly9Ps2bNeP36dTp/E5FWfpgALmkDM2rUKLp27UrhwoWJjY3l/fv3DB8+nHz58tGzZ0+ioqIYMGAAFStWxNDQEDs7O+Wz2tra5MqVSx6ZpCBHjhz06dOHihUr8vLlS9zc3Hj//v0Xu+8l0FDn7OxMQEAA3t7eHD58mLi4OMqVK8fEiROJjIxk1KhRbNmyBQsLCyZOnMhvv/2Gk5OTEsSJL3N3d6d///60bNmSsLAwYmJi1MZdbdiwgUKFCvH27VtiYmKoVasWsbGx2NvbM2PGDLp27Sq9Gynw9fWlVatWBAUF8erVK4YMGcKlS5do374979+/J0uWLHTv3p2qVauSLVs2GjZsKBMWvkLOnDnZv38/N27coHfv3ty4cQM7OztcXV0pV64cf//9N/ny5SM+Pp4aNWrQt29fGjRoQP369dO76CIN/TABXKIiRYrQtWtX1qxZw9GjR4GPAcSiRYuIiYnB3d2duLg4ZX3TxEelEmR8XmIDrK+vj62tLb169eLDhw+0aNGCqKgoqb+vlDdvXhYuXMiCBQtYvHix2nvFihVjzZo1PHjwgFatWvHixQty587N7Nmzef/+PS1btkynUmcuenp6TJ8+nUuXLhEQEKA2Hi7pNdqqVSsSEhJYvXq1EtgVKlSIfPnysX///vQqfoaRM2dOnjx5oryuX78+w4YNo3fv3vz999/Y2toqkxKuX7+Ovb0979+/p169epQtW5YpU6bIZLAUpNZW5syZk3379nH//n26d+/OzZs3KViwILVr16ZEiRI8efKEKVOmEBMTQ0BAACYmJnTv3l2eFP2H/VABnKOjI8OHD+f169c4OzsTERGh/KG0aNGCmTNncvDgQSwsLACoWbOmNCypqFGjBqampujo6LBp0yZlrAt8DOZq1qyJj48P58+fZ+DAgVKPX6l8+fIsWbKENm3aKDN04X8B8q+//sr27dvp2bMnK1asAD72fL58+VIC5FR8+oOoo6PDjh07OHLkCL6+vmr76uvrU6RIES5cuKC2XVtbm/j4eKnj/zd58mS0tLQICAjgzp07wMc8hSVKlCAgIIC6desyY8YMxo0bR1hYmHLD7Orqyrt375TjSM+buqTXapMmTShUqBAxMTGcPn2a48ePkzNnTvbs2UN4eDienp5cu3ZN7fPm5uZ4eXnRpk0bGjVq9NUphkTm9EOthfr+/Xtu375NwYIFMTY2JiEhQVkfcvXq1bi5uXHz5k127NihBG+yoHJyQ4cOZfLkyfTt25eZM2fy559/Kot6JzbIBw8eZM2aNRQrVoyKFSsCskbk18idOzcGBgZERkYCKNdfYmqFU6dOcfr0aQoXLqx85sWLF0oPkkgu8QcxcR1ePT097t27R9GiRcmRI4daveXLlw8vLy+KFSumdoy4uDgJ3pIICwtTkpz/9NNPAGzdupUVK1ZgaGhInz59mD17NvPmzePmzZvcvn2bWrVqMWHCBLXjSPCmLvEaGz58OH5+fvz++++UL1+ezZs3Y29vz5MnT7CxscHS0pKAgADKli2rfNbMzAxXV1cqVKiAg4ODBG8/gB8iOmnevDl2dnbs2LGDoKAgrl69yp9//slPP/2kFqRt3LiR/v374+fnp3TtSwOjrlevXrRp04YuXbrQpEkTKleuTJ06dWjbti3wvwY5NjaWJUuWoK2tTevWrQFJFfI1rl27hpGREY6OjsDH+kwMMBJ7MVUqVYqJj6V+U+fg4MChQ4coUaIE7969Y9q0adSoUYOhQ4diZWWFtrY2OXLkYNSoUeTIkSNZz4ZQN3fuXMaMGUOzZs3o1KkThQoVAiA8PJzcuXNjaWnJ3r17gY/X5YULF6hXrx69evVKz2JnCnZ2djg5OdG5c2dat27Nzp07ATA0NATg+fPn1KlTh0qVKtGhQwflc8+ePWPJkiV06NAh2eos4r/pP58HzsDAQBlAu2nTJvbs2YOuri5dunRh6tSp9OrVi9u3b6c4DkMe+6krXrw49erVY9CgQYSGhqKtrc2tW7fYsWMHRYsWVdtXS0uLd+/eMWjQIIKCgihWrBhXr15Np5JnHuHh4axbtw4PDw9u377NunXr1AKzHDlyoKenR+XKlTE0NGT37t1cunSJDx8+pGOpM75nz54RFhbG7Nmz8fDw4NSpU7Rt25b58+dTvnx59PX1efv2Lfr6+tStWzfFMXFC/RHf8uXL0dXVZcCAAcDHoO727dtK7rH+/fsza9YsevfujZaWFmfPnpXl3L7CTz/9xN69ezl16hRNmjQhICCAvn37snz5coyNjcmdOzfXrl2jWLFivHnzRu2zjx49SqdSi/Twn+uBS/o4REdHh6ioKHr37k21atWUu7/t27czZ84coqKiCAwMpEiRIhKsfYVnz57x7t07bty4AfwvwH369KlyB570kV/ie3fv3kVPTy8dSpyxpfTIMyoqisWLFxMeHs6IESOUO+wsWbJgYWFBUFAQOXPmJFeuXJiZmZEzZ04J3j6RUr0eOnSISZMmcf/+febOnUuJEiUICQmhbt26zJ8/n40bN7Jo0SLq1KlDbGws2traErx9ImnwVqVKFQAWL17M2LFjcXR0xM3NjUKFCvH+/Xu8vb0pUqQI/v7+aGlp0aJFCyUoluAtZYltZ9IchdOnT2f48OHKhKZ69erRtm1bTExMeP36NfHx8TLM5wf2n53E4O7ujra2Ntu3b+fWrVu4u7vj7OzMsGHDOHLkCPBx1pSPjw+nTp1SFgQWn2dkZKTc9SXeSQ8ePJjChQvj5uYGfOzqL1iwIBcvXgQ+roV4+fJluTv8f76+vqxevZpLly6l2stjY2NDjx49sLGx4erVq+jo6PD06VN0dXUlNcBXat68OUePHlVL+VO5cmW8vLwoUKAAnTp14sqVK8n+P5Aeos8bPHgwjo6O/Pnnn8rKKm3atGHw4MGsX7+eGTNm8ODBAwwMDLCysuLmzZsAMtv0M1q0aIGhoSGLFi3Czs4OX19fcufOjZ+fH3PmzAE+tr3BwcFcvXqVYcOGpXOJRUbwn3yEmitXLjw9PTE0NKRFixb4+fmxd+9eqlevTvXq1Tl9+jRRUVHs3LmTly9fcvLkyfQucqbxaZc9fBzvlsjExITdu3ezbNkyJYCTLOv/U6ZMGaytrfn999/x8vLi2rVrKQZxISEhXLlyheLFi1OzZk3ev3/P5cuXldxj8mOobv78+dy+fZuRI0cCH1Ou9OrVCxcXF9zd3ZWbh+PHjzN79mymTZvGjBkz6NmzJ5cuXVI7lgRvqevfvz8uLi60b99ebX3OpUuXkpCQwODBg4mPj2fx4sVcu3ZNCd5UKpVcr6nQ1tbG0dGR7Nmzs2jRIjZt2kSNGjVo27Yt79+/p1SpUmhpaeHr64u5ubky3liI/2QPnIGBAR4eHvz222+cPHmS7t27ExgYSPny5alatSrNmzdPtmC1jHf554YOHUrx4sXp0aMH27Zt4/HjxzRr1iy9i5Vh1apVi65du2JiYkKvXr24evXqN11/0kOkTltbm27dujF06FD8/f2ZPHky8HHigouLCyqViu7duytjs7S1tVm/fj2FCxfm4MGDeHh4pGfxMw0zMzMlP2HiWrygfjPRpk0bJk+ezNChQ5WeI6Eu6d+6np4e0dHRmJiYcOLECZYtW8bw4cMBmD59OqVLl6ZEiRKEhoby/v17nJycJPGxUPynHp47OTlRrlw5oqKiWLFiBYULF+bhw4fUr1+ffPny8eHDBywsLJg1axbGxsZqn5Xg7Z97+/Yt2bNnZ9OmTTx69EgJ3iSthbrEVCv79u1j6dKlREZGEhAQwE8//fRNaUCk4VYXFxfHzJkzGTRoEAMGDFCWvNqwYQPz589HS0uL6dOnY2pqCnx8xH/v3j28vLzo2rVrehY9UzEyMqJcuXLJeuHj4uLIkiUL8LEnrkOHDsqjVZFc0iXHvLy8KFmyJC9fvmTYsGFUr14dW1tbAHr06IGLiwsODg50796dZs2aKeMzpQ0Q8B8K4PLmzUvTpk3Zvn077u7uvHnzhq5du9KnTx/MzMwYNWoUixYt4vLly7x//z7FR4Hin9HV1eX333/n0qVLNG/eHJAezZQkPmr28vKiadOmWFhYULlyZYKCgihatKjkcvsHEgdwx8XFcfbsWebPn4+Pjw/dunUDYNOmTQQHB6Otrc2ePXvw9vZm+fLl5MmTh927d0udf4PXr19z+fJlihcvjr6+PvC/mzQbGxsGDx4MwI4dO2Rw/ReYmZnh4uJCz549+fPPP2natClHjx7lzp07VKlSBSMjIwBu377NsWPHuHnzpnKtyqNokeg/9QjVwMCA1q1b07NnTy5evMjBgwfR1tbGzMyMwMBAJTlqakvniH+mePHi9OzZU5nlK/WaOnd3d4YMGYKLiwt37tyhVq1aNG3aFB0dHXr16sX169el/v6BYcOGUbduXc6fP0+lSpX46aefGDduHJMmTQLg119/pV27dhQtWlRZYD02Nlbq+htNmjQJW1tb+vfvz+7du4mNjcXAwIDg4GBiYmLo2LFjehcxU9DR0aFjx47UqVOH3bt307dvX+bPn0+BAgVo2LAhrVq14uTJk3J9is/6TwVwiSpWrEijRo2wt7fHxMSEx48f06tXL06fPq3sI38YaUPqNXU6OjrMmDGD58+f4+Pjo2xv1KgRPj4+vHr1SslLKL5e/fr1mTNnDi1atODkyZPkzp0bJycnfH19GTduHAEBAcq+xsbGyo2cTAT5ekn/rhcuXEjp0qUJCwsjIiKCUqVKYWxsTK1atdQmNInkWrduzYMHD9i/fz/GxsZs3LiRlStXsmrVKjw9PTE2NqZdu3bcu3eP+vXr8/Tp0/QussjA/pN93H///TcBAQF06tSJixcvUqxYMdzd3dX2kSAjbUi9pi42NpaoqCgKFy6s9nhp69at7N+/nypVqrBixQry58+fjqXMfHLmzMmdO3eU2eSPHj1i/vz5TJkyhUGDBinpbQAleANJ1P0tEhPwAri4uPDnn3/y/PlzLC0tOX78ODY2Nsr4LJEyS0tLateuzerVq/H29kZfXx83Nzdat25N6dKl8fPzY968eRw7doyIiAiePXuW3kUWGVym6oH7J48+dXR0cHJyYuXKldJgi+8mtWu0Y8eOeHh4MHjwYA4dOkR0dDQAbdu2xc7OTrn5kEHKX8/GxkbJn3X27Flle5UqVdiwYQNaWlp4enqybNmydCxlxla2bFllZn50dHSq1++nsx+T7ic9ml+mo6ND48aNGTx4MLdu3eLkyZNERkZiZWVFYGAgL168AGSYj/g6mSaAc3R0xMbGhsDAQB49esT79++/+JlPGxtpYMT3kLTRtbW1xdTUFD09PdavX8+rV69YunQpBQsWxN/fn+PHj/P27VtmzJjBuXPnlMW+JU1Acqn9mCXOLI+IiGDq1KlK/sEiRYrg6enJtm3b2Llzp/ztp6J27dqsWLGChQsXoqWlRWBgIHfu3EnvYv2n/fzzzzRp0oSmTZuSN29enjx5Qr9+/dRyZkrwJr4kUwRwxsbGhISEYGRkxKNHjzh9+jRHjhxh1apVyj7ygycymuHDh+Pk5MTZs2cpXrw4r169YvTo0ezbt48lS5aQP39+cufOzZMnT9DW1qZatWoSZKQi6Y9Zy5YtyZcvH6ampqxZs4bTp09Tr149+vTpw6tXr1i+fDnh4eH079+f2NhYJfGp3MClrGrVqixdupTAwEBy5syJg4MDK1eu5PTp02zatEnZT9pYzTIwMCBPnjyMHDkSW1tbtm7diouLS3oXS2QimWIlhrdv37J+/Xpu377N+fPnqVGjBv7+/tSuXZtLly4RFBQkDYvIUFq2bImTkxOtW7fm/PnzODk5MWPGDCX9Qrt27ahYsSJFixYlLi6ONWvWEBcXJz+SqUgM3kaOHEnr1q05fPgwpUqVok6dOmzdupUxY8YQHR1Ny5Yt+fPPP7lx4waRkZE0btxYOYYEbyk7duyYkpdw8uTJnD59mty5czN16lQaNWrEkSNHWLJkiVyXX2Bvb8/BgweVx6BfEhUVxY0bN2jXrh0ODg5qwbIQXyNT9MDBx5lmf/75Jw0aNODKlSsYGhri5eVF3759OXv2LOvWrWPPnj3JVlgQIj34+PhgYWFB3759adq0KZMmTcLPz4/58+djZGSEvr5+skHKErx9Xu3atZkyZQrt2rXj3LlzAPTr1486deqwZ88eJWVI3rx50dbW5u7duyQkJEjPWyqS9mp6eXnh5ORE7dq1iY6ORkdHh7Nnz/Ly5UuioqIwNDRk2bJlrFq1SlnRQvxPq1atGDRoEIsWLWLOnDm8fv36qz4nw3zEv5FhZ6Em9lQkznzauXMna9asUfIMvXv3jiZNmrBt2zaOHj1KrVq1OHjwIC1btky3MguReL3myZOHR48eUaZMGaZMmcKoUaOYP38+KpWKVq1aYW9vr6zMkEiCN3WfJoI1NjYmOjpabXH6gIAAjh8/jrOzM4aGhgDcv3+fO3fuSOLTVFStWhVACW4BAgMDeffuHR06dABgz549XLlyBScnJ9q3b8+5c+eoUKGCsqasULd8+XLWrVtHo0aN8PDwIHv27F/1ucS/+cSEyHKtim+RIQO4GjVqMG3aNCwtLdUyep89e1bJObR3715evnxJ9+7d8fX1xdPTk65du7J69ep0Lr34kXyaxT+xQd6+fTuenp7s3buXPn36sGDBAgCyZMmCra0t+fPnl5xZX5BYl127duWXX35BV1cXbW1t5eZOR0eHhIQEpkyZQt68eZXAJCkZBK7OxMSEefPmsXXrVuBjwJB4I7FlyxaqV6/OyZMnefXqFV27duXBgwc8ePAADw8POnbsKCtXpEBPTw+AESNGKJ0JnTt3TrZc4+cULlw4rYon/sMyZABXsmRJChcujI+PD7lz51Ya8sWLF2NoaMjNmzeJjIykbdu2ypJYDx48UMYRSS4i8b0kBgh16tShVatWlChRAkNDQ7Zv387ixYuJiIggJiaGrFmzUqxYMebPn4+ZmRmjR49O55JnXEkDhHbt2jFq1Chev37Nli1bAPD390elUikBsJmZGbdv3/7qsUc/spcvX9KhQwdy5crFunXrgP8t8bZx40aqVq1KdHQ0TZs2JSIiAkjeEypBsbrEVECtW7cmNjaWIkWK0K1bN7p06UK2bNm++Hk3NzeOHj1K3rx507qo4j8mw46B69y5Mw4ODty9e5eRI0cqjUmrVq3o0aMHPXr0UMbBCJGeRo4cibOzMwkJCbx584Z169YRFBSEiYkJXl5etG3blqdPn/L8+XNevnxJ8+bNiY2NlTFvX2BjY0OePHmIjo5WZpxXqFCBJUuWcPXqVebNm8fr16/p2rUrZmZmNGjQQOrzK2hra1OiRAkWLVrEhQsXcHV1VeqtR48e1K5dm169eqk9qhaf5+3tTdeuXRkwYADv37+nZcuWFCtWjNWrVzN79my1BNJJubi4MGTIELy9vdmwYcN3LrXI7DJcD1zi3V5wcDDLly+nWrVqDB06lNy5cwNw+PBhzMzMqFGjRnoWU/zAkvYQVaxYkXLlytGuXTsqV67M2rVrqV27NgMHDuTVq1f079+fevXq0b9/f/r06YOjo6OSsV6CjdQVKVKEVatWMWXKFLVejNDQUOzt7cmSJQvDhg3D398fXV1dGjVqJAuopyJxYXT4+Ng5Li6OCxcucO/ePRo2bMiqVauUa/rSpUsUKVKEn3/+Ob2Km+nkyJGDhg0b8scff7BmzRolHciBAwdwdXVVe5ya9Pp0cXFhxIgR9OvXT4I38Y9kiNauVKlSmJmZAerd83Xq1EFfX58SJUrg6+uLlZUV9+7dIygoCC8vL4oVK5ZeRRY/oNKlSwP/u0YdHR1xc3Pjxo0bnDp1isjISMaNG8fWrVupXLkyAwYMIFeuXISFhbFjxw5Onz4tA+u/0p07d3BxceHRo0dUr15d2a6lpcWNGzdo1KgRDg4OODk54eTkJEFxKqpVq8bs2bMpXrw48L/HpfPmzSNHjhy4urry008/KY9T9+7dy/3792nfvn26lTmzeffuHXFxcUqgnDiEZ+DAgYSHh9OuXTv69++PsbGxcn26uroqY7clfYj4p9I1gFOpVFhZWRESEoK3tzcWFhbKj+OCBQsoXLgwderUUTLXDx48mJw5c3LkyBH27t3LtWvX0rP44gcyatQoXF1dgf/1wNna2tKgQQPKli2rNu5y8uTJbN26lV9//RVfX99k42BkDJG6lAbFx8TEsHXrVgYPHkydOnWUFCHx8fFKoPbgwQPu3bsnQfFnFChQADMzMwYOHEi+fPmAj21r0aJFad26NVu2bMHd3Z38+fOzfv16AHr27EmnTp3SsdQZV0rXanR0NBEREdja2io9nIk9bVevXiU2NhYDAwPlMWrNmjWZMGECffr0keBN/CsZYgxc8+bNCQoKYsaMGfj7+zNr1iyKFi1K+/btuX37NvC/MXHPnz+nS5cuysBRGUckvodKlSoRGhpKbGws+fLl4969e6hUKoYNG4adnR3Lli1LNtZl6NChmJqa0q9fPwnavkK3bt0oVaoUFhYWLF68mFOnTvHgwQPs7OyYMWMGK1asoH///uldzEzBwsJCGTfs5ORE27ZtefLkCWZmZpiYmODq6srdu3eV/X/99Vc2bdrE3Llz8fX1BaRt/VTSvHkVKlRApVKhra3NyZMnsbKyYufOnfz999/06tWLqKgoYmJimDNnDuvWrWPbtm3KjUZiUH3q1Kl0/kYis0u3AO6XX37h9evX3Lhxg4SEBBwdHZkzZw4PHz7k5cuXtGrVigcPHqglNvT09KRAgQL0799ffhBFumjatCndunXjjz/+YP/+/ahUKsaNG8cvv/zCli1bCA4OVmZGJyXrGiaXtE4GDhyIh4cHq1evplChQhQoUICTJ08yZcoUrl69ip2dHVOnTmX37t106dIlnUuesTk6OtKzZ0+mTJnC5s2bgY8rg7i6ulKiRAk6duxISEhIsmuyePHiXLt2TYK2LxgyZAj29vZER0djaWnJxo0bmTBhAnnz5mXBggW8fPmSJ0+eYGxsjJGREb///rsyPlPqVmhSujxCtbOzY8eOHQwePJiCBQsCsH79ejp06IClpSWnT59WejKSdkdPnTpV6c2QXEQiPbx//55Xr17RrVs3rK2tSUhIwMfHh9DQUBo3bkynTp1SzP8kwVtyiXWSK1cuChYsSNu2bRkwYAAtWrRg0qRJWFlZ4eHhgbGxMVu3bsXb2xszMzP52/8Mc3NzBgwYQNGiRWnRogX29vYArFixguDgYM6dO0eHDh0oXrx4smvyypUrMhHkC7p160aHDh3o3r07NWrUYNasWbRv355cuXJx8uRJKleuzPr16zlz5gwhISFUrVpVgjeRZtLlL1VXVxeAxo0bM3bsWAoUKADAtm3bcHNzo23btkpjDR/HvXzaaMsPokhrKQUK27dvZ9asWcDHHuHEIG7gwIGcOnWKjh070rBhw+9d1EyrZcuWnDlzhl9//ZV3794p2xMz2zds2BBzc3NlvdhmzZrJDdxnPH36lMOHD5OQkEB8fDwtW7akSZMmAKxZs4alS5diamqKj49PqpPAJNBIXZkyZZgwYQKnTp3Czs6Obt26MWDAAM6cOUOWLFl48+YNEyZMYMSIEfj5+Sl5SaVORVpIlwDuyJEjLF26lGHDhlGkSBGmTZtG/vz5gY/JJDt37ky3bt3o2bMn5ubmgARs4vtLvOZsbW1xcHCgadOmwMdlhmbNmkVcXBy9evWiRo0aJCQkMGjQIObMmSOrgXyDbdu2sWfPHn766SelDUgMzhYuXEhCQgK1a9cG1NsAaQ+SS1xRYcqUKezfv5/Lly+jra1Nx44dady4MfCxJ27ZsmVkz56d8ePHKxMbxJcZGBhQsWJFHj9+TKVKlQgKClLWN9bR0WHgwIEppreSyTUiraRLAPfo0SPi4+OpUaMGDRs2JE+ePEydOlVpwDds2ICbmxs9e/bE0dExPYooflBjx45VWyVhzJgxTJ8+HV9fX2XcW6lSpQgJCWHWrFnExsbSs2dP6tatS0JCAjNmzJDHUN/g9evXdOvWjYMHD+Ln50e5cuWU4Mzc3Jx3797x/PnzdC5lxpb4pCIxRcjbt2+Jj4/n1atXeHt7ExsbmyyI27hxI5cvX+b+/fvpVu6MLKUe3qioKFavXk2vXr1Yv349gwYNUpbIMzIyokyZMpQqVeo7l1T8yL7LJIZff/2VyMhIwsPDefv2LfBxYeoNGzYwatQorl27xo4dO7h69Sq9e/dWZkfVqFGDI0eOyB2M+C6yZctG//79qVOnDuvWrWPlypUEBwfTt29fnjx5go6ODsHBweTMmRNHR0fu379P3bp1GTBgACdOnGDo0KHp/RUyLWNjY5YsWUKRIkX466+/uHv3Lg0bNiR//vzY2NhIG5AKR0dH+vTpw969e5k5cybv3r3jzZs32NjYMHv2bBo2bIiBgQG+vr5oaWmxYMECZR3URDLBRl3S+ihevDhmZmbcv3+fR48eUbp0aQICAnj9+jWenp7cvn2bnDlzMnXqVLJnz06TJk3kcan4btI8gHNwcCA4OJizZ8/y4sULxowZw71793j69CmTJk3iw4cPDB48mAIFCrBp0yauXr3KgAEDuHnzpnKMpDNRhUhLuXLlon379tjb23P37l3i4+Nxc3MjJiZG2SckJISnT5/SokUL4OMNSmKSXvHPGRsbM2fOHOrUqcOyZcu4ceMGQUFByjgiaQPU5c6dm5UrV/LTTz+RkJDAnj17iI6O5s8//+TixYuMHDmSK1euMG/ePCpXroynpye5c+dm6NChHD16NL2Ln+H5+vpia2uLqakp169f58mTJ/Ts2RM7Ozs6duxI3rx5efz4sRLwNWjQQJbIE99VmgdwNjY2rFq1ijNnznDr1i3KlCnD+fPn2bVrF7dv32bFihW0aNGC06dPky9fPk6ePMm8efMYPHhwWhZLiFTlzp2b9u3b4+zszLt376hZsyYA+vr6fPjwgcaNGzNq1CiaN2+u5CkE6clIybf+mGXLlo05c+ZQoEABXFxcuHLlivwgfkazZs2U5dkuXryISqWic+fOrFy5krp16xIVFYWtrS3R0dFUqVKFhg0bMmLECLlOv6Br16707t2bjh07cvToUSZMmECbNm1o1qwZx48fp3Tp0pQqVQpLS0tu377Nxo0blSTTcqMhvhedtDy4SqUiJCQEZ2dnVq5cyfbt21m/fj0mJiaMGjWK48ePY2xsTM2aNTl37hz37t2jbNmyPH36NC2LJYSaTwOvR48e8ddffwHQq1cvhg8fzsiRI/nw4QPwcSwMJB+cLD+K6lQqlRJ45cqVi8ePH3/xM69fv6Zz58789ddfLFy4EDc3Ny5cuJDWRc10Eq/ZtWvXoq2tTfPmzSlXrhx9+/Zlx44dVK9eHW1tbQoVKoSFhQX379/n2LFjHDt2TO3zIjl9fX2qVKnC+PHjOXr0KHXr1sXZ2RkfHx+OHz+Orq4u169fJywsTO1zWlpaEryJ7+q7JfJt1KgRCxcuZNasWYwaNYqsWbPSqFEj6tSpQ0BAABcuXFBrVOSuW3wPSa+5n3/+mQ8fPvDkyRMiIyOxtLSkXbt2tGrVih07djBt2jSyZcuGn58fWbJkwd7eXn4EU1GzZk1+//13xo0bx/jx47GwsMDd3V1ZQSU1if9/ZM2alQ0bNqCnp0edOnXUHmGL5Jo1a4aLiwuvX79m+PDh3Lx5k2zZsmFiYsLdu3clYPtGy5cvZ+bMmejq6jJ37lyGDx/OggUL0NHRoVWrVkRERLBz5870Lqb4wX3XlRgaNGjA4sWLWbBgASNHjkwxY70Q6cHX15d27drx+vVrIiMjad++PeHh4UoQ5+XlRVRUFNu2bcPQ0BAPDw9iY2PlhzEFenp6jBgxgt9++413795RqlQpGjRo8E1rF1esWFGZIfno0aO0Kup/StOmTXFxcSEyMpLx48dz/vx5QHrbPielutHS0mLhwoUUKFAAKysr/Pz8WLhwIQCWlpYEBQWxfv16Fi9enB5FFkLxXXMdbN++nfbt2+Pq6srQoUOVHG9CpKeqVavSpEkTunTpwujRo3n69Cl79+6lePHiPHz4kEWLFjF58mRiYmK4ePEibm5uxMbGoq2tLT+MKYiOjmbYsGFER0fz+++/s2bNGiV4+5oEvB07dmThwoXkzJlTgrdvsG7dOhYuXEjWrFnp168fZcqUAeTRfmqSBm9ly5blp59+wsrKivj4eHx8fNDX1+fevXssW7aMLFmykCNHDiZPnoyBgYEyxEKI9KSRHrgaNWoQGRnJmTNn/nfgz9z12drasmDBAtatW8egQYN49erVvy2CEF/t02uzcuXK/P7770yZMgUAKysrJk6cyK+//oq9vT1XrlwhX7581KhRg+XLl8uj/S/Q1tbGxMQEb29vjI2N+emnnwgJCWH8+PHK+0nHCiX9/8PFxYURI0bg6enJpk2b0qX8Gc239qAlphbZvXs3fn5+aViy/4bhw4fTokULVCoVV69eZebMmezatYtatWoRHBzMw4cPiYuL482bN2TJkoX69evLbFORIfzrAK5atWoMGDAAKysrzp49y4YNG9i+fTsxMTGfnZHj4OCAu7s7TZo0kTtEkS569uxJ0aJFKVu2LGFhYfTu3Vu5Xq2srJgwYQIVKlTAyclJbSC9NNzJpRZkGBsbM2DAAKpUqcKuXbuUIA4gX758hIeHK3WZGLz16tVLWYRd/E/p0qUxMDDgzJkzStLe1FhbW3Po0CG5Tr/gt99+Y9asWXTv3p0CBQpQvXp1atSogbe3N7t27cLMzIxWrVqhpaXFw4cPWbt2rcw2FRmGRnrg9PT0sLCwwM/PD1NTU6KioujYsSPv3r1L8cfu08ZexmiI7yHpddarVy969+7Nrl27yJ8/Pz///DPt27fn0KFDyv6WlpbMnz+fFy9e0Lp16/QqdoaXtF6dnJwoVqwYWlpa7N69m6NHj5I9e3b69u3Lb7/9xuHDhwkMDGThwoXcu3cPLy8vANzc3Bg8eDC9e/eWnjfAx8eH0NBQduzYAcDIkSNxdHTEzMyM06dPM2vWLHbs2JEsiPi0LZWbjdS1atWKUqVK8eLFCwICAgAoUaIEHh4e1K5dm8GDB7Nly5Zkn5M6FRmFRgK4xEYjS5Ys1KxZk/9r797jcr7/P44/OlNaiBDLIeRsvs7nHHNKJsekpIURhRyLtEKRQ+QwITnMIafm2NDCHOe0zbGZQ9HkkCgddPr90a/PNKcdrKv0uv+z7XN9ruv22uf26bqen/dxwoQJlCpVim7duvHkyRO54UWBUqVKFcaMGcOOHTs4ffo0urq6LF26lDZt2mBvb68stQA52xTFx8fLA8Zf4OXlRf/+/bl27RrFihWjWbNmzJkzh0WLFlGyZEmcnZ3p1asXurq6PHr0iG7dupGenk7z5s1Zs2YN7u7uhIWFqfp/Q+UMDAyIjIzk7t27LFy4kGLFijFz5kw8PDxISEhg5syZFC9enODgYHbs2CEtQf9AxYoVWbhwIc2bNyc4OBgvLy/lNTMzM0aOHIm5uTlfffUVu3fvVl2hQrzDfzIL1czMTPnS7tixo7JulhCqlrucTWxsLKNGjVJWpNfU1OTrr7+mdevW2Nvbc+bMmTzvk1bid+vQoQPLly9n0KBB/PTTTwAMGzYMPz8/3N3dWb16Nfr6+piYmGBiYkJ4eLjyUFe1alV0dXVlvbdXlC9fnpCQEB49esTVq1d58eIFAQEBQE639PLlyylbtixr1qxh586dEuL+gVatWjF69GiaNm3K0KFDOXv2rPKamZkZU6ZMQUNDA3t7exVWKcTb/aNZqC1atKBJkyZvnVF248YNJk+eTGJiIj4+PmhoaPyrIoX4UPbv309ISAjGxsbUrVsXHR0dIGcj8JEjR3L8+HH27t1LnTp18rxPwtsfJk6cSM2aNfMcK1WqFHFxcdy4cUP5Xli3bh3e3t54eHhQrVo1EhMTuXLlCgcOHFDGEQHcvn1bwtsr1NTUePDgAQ4ODlSoUIHx48dTo0YN5fXExERGjx7No0ePGDZsGEOGDEFdPV8XFPgonDx5koCAAE6fPo2vry9NmzZVXrtx4wazZs1i2LBhqitQiPf423/1n3/+OXv27GH+/Pk0aNDgreddu3aN7du3U61aNSpWrPivihTin3jbA4abmxs7duzAw8ODzp07o62tDeSEuC+//JKFCxdy/fr1/Cy10ChbtixTp07lq6++omrVqsrxzMxMzMzMKF26NNnZ2Whq5mzy8t1335GYmIiRkdFrnyWtRnnl3q/Z2dkYGhoSGxuLjY0NZ8+epWHDhnTq1Ek5NzfEZWdn07BhQxmi8g/9+OOPrFy5kujoaPz8/GjSpInyWnR0NNnZ2X9p6RshVOFvBbhatWrh7OyMv78/mpqaLF26lM8+++yN52ZmZrJ582bKlSuHg4PDh6hViL/s1S5PS0tLxo8fz/Dhw5V9TUeNGsWhQ4cIDAykS5cueULc3Llz87QQiRxqamo8evSIxo0b89lnn+Hn56e0DB09epQzZ87g5+dHpUqVlFmSycnJymQm8Xav3q+urq4EBgZSvXp14uLiGD58OKmpqYwdOxZzc3PlPYmJifTv3x83NzcVVf1xOHXqFF9//TW3b98mODiYWrVq5XldWt9FQfW3vlVLlCjB6dOn2bhxI+3atUNDQ4OAgIC3hrikpCS8vLyoXLky+vr6H6JeIf6S3C/dWbNm4e/vT+vWrfnyyy/x8/PD09MTACcnJ7777jsWL16MpaWl0mqUS1qI8sptiYiOjsbKyormzZszceJEqlevTkJCAiEhIejr67NixQrMzc0xNzdn/vz5PHv2LM/EEPG63Pt15syZODk5sWfPHqVVLS4ujqFDh1KiRAlcXV2VhxCAlJQUaSV6Ay0tLeXfS5Ysmee1N12rU6dOsWHDBrZs2UJUVNR/XZ4QH8TfmsRQrFgxjIyMiI6OBnI2/Y2IiCAjIwMXFxdlId/ixYuTkpICQJ06dRg0aBDz588nMTHxw/8fCPEWXbp0YfHixTg4OHD27FnKly9P3759cXJyYvPmzcqaZJs3b0ZTU5P+/furuOLCYebMmWhqatKjRw8qV65MREQEEyZM4P79+1hYWGBjY0PXrl2JioriyZMnDBgwQBY+/QuaNm3KypUrcXV15fjx48rx3DXHcic26OrqMm7cOC5evKjCagumvn37snv3buU+Gz9+PN26dSMpKYnw8HBCQkJIS0t7770o96ooDP7xLFQtLS3S09PR0tIiMjKSjIwMxo4dS1xcHLNmzeL7779n27ZtAFSqVEnZ11CI/OLk5ISNjQ2dOnVSvowNDQ0ZOXIkrVq1wsnJid9//x2QWaZ/1ciRI3Fzc8PGxoaXL19SunRpgoKCuHTpEq6ursrfuampKYmJiTx69Ijs7GxZ+PQN/nzPde/eHW9vbzp06PDaw27u922lSpVwc3NjwoQJEjD+ZMCAAUyZMoXQ0FB8fX0ZNGgQ3t7ezJ8/n3bt2mFoaMj169eZNm0aqampEtJEofevlhHJ/VLW0tIiIiJCGbysoaFBq1at5Atb5JtXfwxz/93S0hIPDw/s7Oy4ceOGcm6LFi0ICwujW7dueVoxJMS937Jly8jMzGTcuHHKMTMzM/bv38+JEyeYPXt2nmsNcl3fZ9iwYURFRVG8eHEWLlyIjY2NMis399rZ2Nhw6dIlrl69qrxPAkheBgYGuLi40Lp1a44dO4a6ujoXLlxg3759aGho4OTkxOeff87169eZMmWKhDhR6P2rkcWZmZmoq6uTnp7OwIEDqV27NgkJCbRu3Vp5TYj/2qsBwcrKitatW1O8eHFu3ryJlpYWAwcOpFy5csr5Dx8+5Pr1669tRyQh4/1KlSqVZzyrtrY2N27cYOnSpXTv3h0/Pz+MjY3zvEeua16vjsFycnJi6tSpxMfHExsbi5qaGoMHD6ZChQoASuvlgAED+Pzzz/N8jgSPP2hqavLs2TMCAgL44YcfaNOmDf379yc+Ph7I+a0KDg5m165dmJmZMXfuXIoXLy7XUBRq/zphZWVlYWhoSEhICFFRUVhaWpKRkYGGhob8cYh8kRsQPD09mTNnjrIw7LVr1/D19WX48OG4ubnRu3dv6tevj5+fH6mpqVy+fFnFlRc+mzdvplOnTvTp0weAly9fAvD06VN27NhBamqq0i0t3iz3fq1Xrx7ly5dn+vTpXL9+nWvXruHt7c3QoUOZOnUqNjY2dOnShdDQUEqWLImvr6+KKy+YNDU1lYex8uXLM2fOHH744QeKFSvGwIEDlcCclpbG2rVr2blzJ23btmXkyJGqLFuIf03z/ae8X8mSJYmKisLFxYXMzEwZ7yLynb29PQMHDlS6n9LT0wHYtm0b6enpDBs2jL59+xIbG8vTp0/p2bOnMntPWoj+ulOnTvHNN9/g7u6OlpYWO3fu5JNPPqFbt27s2bOHb775BpBu0/dp0qQJBw4cICMjA1dXV+V4aGgoKSkp2NnZ4eXlRXR0NHFxcXTu3Fnp1ZAH4z9YWlrStm1bJk+ejI+PD506daJt27YsWbIENTU1zM3NmTp1KnPnzgVyHjhCQkKIi4uTPXdFoffBt9KS8CZUISAggPT09DxrYr16L+rr61O6dGmKFStGVFSUDKz/F2rWrMngwYMZNWoU9+7dQ1NTk8TERDp27Phat7R4u2HDhjF//nzWr1/P7Nmzle4+AF1dXUqUKAHkdPmDfLe+KvcBwcLCgo0bN3Lx4kVq1KhBz549lXGC+vr6jB8/njZt2vD999/j6+v72kOFBGJRmH2QFrhXyReMyG9aWlrUr1//tbXGMjMz0dbWplatWty8eZO7d+8qr6mpqcm9+orOnTtz/vx5nj59+t5zo6KimD17NqGhoTRq1Ii0tDR27dolre9v8bZrsm7dOooXL85XX33FnTt3WLdunTL7NHcB5Fxyv/5h/fr1LFq0iIsXLxIeHs7x48dp27YtO3bsyDPJIzExkUWLFgHQrl07PvnkE6ZNm5bnsyS8icLsgwc4IfJbeno6hw4dYsCAAWzatCnPvpqffvopjo6OLF++PM/sSOne+4ONjQ1+fn54eXkRGhrKs2fP3vuezMxMrl69+tqsSAkZr8u9JjY2NtSuXRs1NTV++uknQkNDWbFiBVpaWsycOZPs7GxCQkLeuF6m3K9/iI+PzzN+9eDBgxw+fBh3d3cSEhKYOXMmL1++RENDQwlxurq66OrqqrBqIT68D96FKoQqNGvWjKlTp/Ly5Ut8fHy4fPkyZcqUISAgAAMDAywtLeVH8B18fHzo1q0bX3/9Ndu3b/9LLXF/JuPe8urduze6urps2bKFWbNmMWTIEA4ePEidOnXQ0dHh1q1b2NnZAeDs7IyHhweLFy8mICBAWQhd/OHP3Z2jRo3i6tWrHDt2DIAePXoQFBTEhg0b8PDwULrzmzRpwrlz51RSsxD/JQlw4qPRq1cvBg0aRLt27YiOjkZNTY3U1FQsLCzIyMiQgPEG2traykxSX19f2rVrR3BwMFu3buX58+d/6TNq1arF9evX/8syC53c8W1WVlbK7McRI0Zw5swZNDU16d27N+PGjeP69euMGjUKADc3Nzp06EDPnj1VXH3BlPv3m/vPo0ePUrZsWZycnDh9+jSZmZl0796doKAgtm3bxvr165k0aRIGBgb06tVL1eUL8cFJgBMF3puC19vCWIUKFWjYsCGVK1fm4cOHhIWFKRvTS/fe29nY2FC2bFkmTZrEixcv8Pf3/0shbtiwYUybNg0LCwvu3LmTP8UWcDY2Nvj7+zNy5Ej27NlDnz598PHxoU2bNiQkJAA52w0OGjSIoUOHMmrUKNl/828wNzcnMjISgF27dmFqasro0aM5deoUmZmZmJubExISQkxMDGlpacoDnBAfG1lpVxRoWlpaSlCrUaMGVatWRVNT860beP/+++8cPHiQr7/+ml27dpGVlSVjs95j0qRJeHt7c/fuXVxcXDh+/Dhubm4MHDiQTz755K3vs7e3Z+bMmbi5uUl4+3/9+/cnICCABQsWKMtU3Lt3j+TkZOrXr6+cl5KSwuHDh6lVqxbVq1dXVbmFTtWqVQkNDcXBwQGAzz//nFu3brF8+XJatmyJpqYmkZGRNG/eHGdnZzp37qysSyrEx0YCnCiQZs+eTalSpZT13GbMmMHu3bvZuXMn4eHhlC9f/i93h8pMs7crWbIkvXr1Yu7cuezevZsdO3bwxRdfsHfvXqZPn86AAQMwMDAA8u4gYG9vz6xZs3BxcZH1tP6fvb09y5Yt49y5c4wZM4aWLVsCcP/+fVJSUhg2bFiesPby5Utu3LhBUlKSqkou8P68m8/Dhw8JDAykbdu2mJmZAdCnTx9u3bpFYGAgLVq0QEtLiwcPHnDp0iXlQU8e4MTHSAKcKHCMjY3p3bs3YWFh6OvrK9viuLq64unpSWJiIocOHVK+wMU/l9u1lPsDp6OjA8DEiRO5evUqTk5OODg4oK+vrwRmBwcHZsyYwbhx4yS8/T8HBwf8/PwYNmwYlpaWHDhwgG3bttGqVSt+//13XFxcaNWqFV5eXnz55Zd06NCBwMBAsrKy+OGHH1RdfoGV+/BlYWGBmpoaL168YN++fdSqVYtWrVop5/Xp04fffvuN0NBQateuneczZNyr+FhJgBMFTmxsLNbW1qSnp7N3714+/fRTli5dyqFDh/j2229xdHTk6tWr7NixQ0Lc3/CmLuekpCRiY2OxsbEBcrYb0tTMWV0oJiaG4sWLU7t2bWVpi/bt2zNnzhzGjx8v4e3/6erqYm1tjZOTE/v37ycjI4MZM2bw7bffsnXrVlq3bs2lS5cYMGAA6enpODo64unpSWZmJhYWFko3v3gzS0tLNm7cyPbt2+natSuXLl0iMDAQHx8fqlWrppxnbW3NunXrZIs8UWTIJAZRoLw6OaFGjRosW7aMRo0asWjRIubMmaOcV7p0aZYvX06tWrUYMmRInrXfxOteva4NGzZETU0NHR0dzpw5g6mpKTt27ODatWsMHjxYWa4hKCiI1atXc/bs2Tzv1dTU5Pz586r83ykw3rWSf+nSpfH29qZ3794MGjSIEydOoKuri5aWFnp6esTGxgKyw8Kf/XmCUqVKlThw4ADa2trs2bOHTz75hPXr19OnTx9Kly6Ni4vLa2vnyQ4LoiiQACcKjE8//ZSYmBggp0skPDwcExMT/Pz8MDY2pnv37jx58kQ5v1SpUmzbto0HDx4wdOhQVZVdqLi7u9OjRw80NTUpXrw4R44cYdasWfzvf//D39+frKwsoqKiqFChAnp6erRs2VJpIZIfxLfLvf82bNiQJ5DlhjhLS0sGDBjw2m4hsrTN21WsWJFnz56RlJREr169GDBgAJGRkejq6uLm5sa1a9cwMDDAy8uL8PBwVZcrRL6TdntRILRs2ZKVK1fStWtXfHx8CAoKolSpUty4cYPJkyeTmJhIWFhYnlmRT58+pW/fvspiqOLdnJ2dsbe3x8XFhTZt2rBp0yZsbW359NNP+f777+nSpQt79uzh9u3bHDt2jFatWkl4+4s+//xz+vbtC+TdTjA+Pl6ZgLNnzx7q1KmT530S3t6sd+/efPfdd7i4uFC1alW+//57njx5QlZWFoGBgdjb25OUlESNGjXo3LmzqssVQiWkBU6oVOnSpYmPj8fExIR58+ZRq1Yt9PX16dmzZ57FYWvWrMnKlSvR0tKiZ8+er61PJi0ZeWlqar62ePHKlSs5duwY33zzDb169SIgIICvvvqKkJAQihUrRmpq6mufI91775YbbuvUqcOGDRuYNWvWG8cGlilTBnt7exYvXizX8y+aMGECn332GXXr1sXV1ZXq1aszcuRI+vfvT0xMDBUrVuSzzz7jwIED8oAhiiRpgRMq4+/vz6hRo1BXVyc6OpqzZ89SpkwZbt26lWdwMuRsoD5q1CjS0tI4e/Ysenp6eV6X8PYHX19fzpw5g46OjrKMQrFixWjSpAnJycm0bt2aZcuW4e3tTUhICJqamri6ur6xJUPCxrvlBoe4uDiioqJo0aIF8PqEkcePH7NgwQIyMzNlTbL3yJ3QsXDhQry8vNi9ezcbN26kXLly6OrqMnv2bPT09Lh//z779u1TFuoWoqiRACdU5ocffmDevHlkZWWhra3NwYMHGTx4MHFxcYwYMULpksoVFRWFs7Mzhw8flr0i32Hr1q2kpaURFhamhLjU1FR27NjBkCFD2Lx5M+7u7qxbtw7IWQvus88+w8TERLWFFyJ2dnZMnz4dfX19NDU1efLkCVu3bmXYsGE0aNDgnQ8UEorf7dXWtN9++w1vb28cHR0xNTUlNTWV7t2751lCBOSaiqJJulCFytnY2NC1a1emT59ObGwspqam+Pj4ULx4cYKDgwkLCwPAycmJ9evXk5aWBshMs3epV68eq1ev5tmzZ/Tu3Zu0tDR69OiBj48Pt2/fxs3Njdu3b2NkZERAQICyX6RczzczMzPD0NAQNTU1rl+/zujRoxkyZAg3b97k+vXrLFiwgMTERPz9/YmOjsbPz4+srCxpGf6AjI2NadKkCb1792bEiBFyr4oiTwKcyHd/Hq82YsQI+vXrR1RUFHPnzuX+/ftUq1YNHx8fSpQowY8//kitWrVo2rQptWrVki/uvyg3xCUmJtKzZ09evnyJra0tY8aMISsri5SUFKX7KXe/SAnFrxs8eDCTJ09GR0eHsmXLsnLlShYvXkxaWhrDhg2jY8eO1KlThy1bttC6dWtSUlIYNGgQycnJqi69wGrWrBkPHz7k4cOH//g6yb0qijoJcEJlrK2tuX79OleuXMHR0ZG+ffty9+5dZs+ezf3796lSpQrOzs6YmpqSnJyMvb39awPzRY43XRM1NTXq1atHUFAQSUlJdO/enfT0dJo3b07lypWpUqUKv/76K2FhYUqQk66ovIYOHcr8+fMZPXo0MTEx1KxZE39/fxYtWsS8efPynGdmZsaAAQMoVaoU8+bNY/78+SqsvOBq2rQp+/fvZ8uWLVSsWBFPT09iYmJISEhQdWlCFCoS4IRKFC9enJMnT3LmzBlGjRoF5HSR9unTJ0+I09PTIzs7W3lKl5DxulfDW/Xq1cnIyCAlJYW4uDjU1NSoW7cuq1ev5sWLF/To0UPpgn6VtGa8zsrKitWrV2Nvb8/+/fuV4+vWraNSpUpYWVnx4sUL5bi6ujo1atRg+vTpFCtWjEGDBsmDxhs0bNiQ/fv3M23aNMqXL0+fPn24evUqP/zwgzIuE+SeFOJ9ZBKDyBevzspTU1MjJSUFJycnunbtqmzjFBQUxM6dOzExMWHatGlUqlSJFy9e5OlikfD2utyQMGnSJDZs2MC2bduIiIjA3Nyc7OxsLl++jKOjI7q6uoSFhVG8ePHXPkN+KF9XokQJAIyMjJTtxQBSUlJ4+vSpso9sruzsbG7cuMFXX31Fu3bt6NChQ77WW1j89NNPBAYGUr16debNm8e0adM4cOAAnp6ebN++nWnTplGsWDG5J4V4DwlwIl/khgx7e3u6d++OkZER586dIyQkhB49elCrVi0A1qxZw44dO2jSpAkDBw5UZcmFyuTJk5VN5vv06cPFixcJDg5mwIABAFy5coUvvviC6tWr59mSTLzdpk2bmDx5stKFCtCjRw/69u3LihUrXmvJzM7ORl1dnd9++40LFy5gYGCgirILhV9//ZW2bdtSpkwZjh49yo4dO3j69Cn6+vp06dKFH3/8kYCAgNeWExJC/EHz/acI8WHUqFGDuXPn8vDhQ86fP8/SpUvZtGkTq1atokmTJsrCvcHBwTx69ChPt5V4uwYNGtC6dWtGjx5NZGQk3bp1o0WLFly8eJElS5aQnZ1NaGgoV65coUuXLty9e1fVJRcawcHBqKurM3fuXOrWrUvHjh2ZOHEiERERbxx3mJWVxZAhQ2jWrBljxoxRUdUFi7m5Obdu3SI6Olo5tn37dhwcHBg7diyenp4cPXqU6OhoRowYwaNHj5g5cyalSpXizp07qitciAJOxsCJfKOvr4+npyf16tUjLCwMd3d3XFxc6NKlC+bm5nTs2FHZ4DuXjIN53Z+Dg6mpKZ06dWLVqlW0adOGr7/+mkWLFrF69Wp27dpF/fr1+eqrr1i/fr3yHrmuf4+9vT3+/v6Eh4dja2v7znP19PSoVKkSN27cyKfqCi5tbW2OHz9OdnY2/fr14969e8r9a2lpia2tLXXq1OHOnTs4Ojry8OHD1z5DJi0J8WbShSr+c127dqVGjRokJiayZMkSqlSpQkxMDL1798ba2pqMjAwMDQ3x8/NDV1c3z3slZOT16o9Z06ZNgZzFTrdu3QrAkCFD2L9/P2vXrgUgNjaWx48f079//zyfI9f17wkJCWHixIlYWFi8s2VNQ0ODFy9eSHj7fy9fvsTKyork5GQ2bNjAp59+qty/58+fp0qVKiQnJ2NpaamEtz/vYiHhTYg3kwAn/lO1a9dm7Nix7N69GysrK6Kjo5kwYQKOjo48evSIiRMncvToUR49eoSBgYGsnfUeuT9m06dPZ9myZQwbNgyAZ8+eoaurS61atYiLi1OWBdHT02PMmDFYWlqqsOqCq379+hgbG+c59ucAkWv9+vVMmTIFDw8Ppk6d+sZzZJLN6x48eICVlRVZWVksXbqUypUrAzkPF/PnzyczM5PatWsr50tgE+KvkTFw4j917do1XFxcsLa2ZsmSJbRt25aoqCjOnz9P586dCQ4OJjQ0lL17975xeQvxOjc3N+zt7bGzs8szrig5OZkffviBcePGUbJkSZo3b46WlhYXL14EpCvqz7p27Yq3tzfPnj3j8uXLBAcHc/XqVTIzM9/axbx27Vr09PSwsLBQQcWFg4GBAc+ePQNAU1OTjIwMEhMTefDgAV27dmXt2rU4ODgQHR3N1atXSUtLo2XLlly7dk3FlQtRuMgYOJFvOnfuTL9+/TA1NaVatWrcu3ePIUOGcO/ePeUcGZv1boaGhoSEhBASEkJoaKhyPHd9PF1dXSZPnkzt2rV59OgRrq6ussPCOxgZGVGhQgUWLlxIYmIiN2/exMPDg9TUVLlm/0CzZs1YtGgRLi4unDt3TjkeHBxM1apVcXV1ZdGiRaipqWFra8u9e/dYtWoVpUqVeq2bXwjxbhLgRL6qWLEiDRs2ZNKkSdSrV49Vq1bh7u6u6rIKjapVq3L06FGcnJwIDw/P85q2tjYvX74EcgbS5y4yK4sfv1+JEiWwsbHB2tqa1NRUBg0aREpKioS4v8nc3Jwvv/yS0qVLM3bsWK5fv866deswNTXFxsaGmJgYjIyMlDGbw4YNIyEhgefPn0vrsBB/kwQ48a/lds39nR+7EiVK4OjoSGBgoISLt3i1yzP32pYqVYpt27axd+9eVq5cSVpamnJez549qVevHn5+fiquvGAbOHAgycnJ7NmzB/jjOmtqamJubs6UKVN4+vQptra2SiAW71axYkXu378PQNu2bXFycqJChQqkpqaiq6urdJnmKlu2LJGRkRw5coRx48YB0sUvxN8lkxjEv9KjRw8mTpxImTJl/nJ4U1dXJykpiYCAADIzM9HQ0PiPqyx8Xv0xGzlyJF988QX6+vo8ffpUWZS3ffv2aGhokJ2dTbFixRg8eDBmZmYqrrxgs7OzIzAwkJSUFOVY7sNHRkYGERERLF68mBIlSjBy5EgVVlp4fP755xw5coShQ4cCcPz4cdasWcPvv//OZ599xoIFC4iOjs4zOeTRo0e0bt0aV1dX5ZiENyH+HmmBE/9Y+fLliYyMJCkpCTU1NbZs2cKFCxc4cuSIco50Qf07np6eDBgwgICAAMLCwoiLiwNg48aN1KlTh59++omHDx9Sv3599PX16dChw2tbPIkc9vb2+Pr68uWXX7J79+63nqejo8OMGTOoU6cOgwcPlsk176Cvr8/atWtp1aoVP//8Mzt37iQoKAiAdu3a8cUXX1CxYkUmTZrEhQsX3tjKJt8RQvwz0gIn/rHk5GROnDiBj48Pzs7OGBgYsGrVKubPn8/nn38OyHpj/4atrS2DBw+mf//+rFq1iri4OGUfU1tbWwICAnjx4gUVK1bkzJkzmJubk5GRIS2ab9C5c2f8/f1xdHRk9+7dVK9enUmTJrF69WpmzJhB48aNlXPT0tKYN28eNWrUwMHBQYVVF3yJiYmcPn2alJQUzp07R9++fRk+fDgAx44dY82aNdy/f5/58+fTqFGjN7ayyXeEEP+MBDjxjz1//pzw8HB8fX25e/cuHh4etG7dGn19fQIDA9m7dy+9evXCxMRE1aUWSpUrV2bfvn1cvXqV6tWrY29vz3fffcfu3buxtbUlJCQEZ2dnhg4dipeXl9IdLWMK89LQ0KB27drExMRQu3Ztqlevzvr162nevDna2tr07duXWbNm0adPH+X858+fExAQQNWqVVVbfAGmqZmzCtXy5cv55ZdfyM7O5sqVKwwdOlRZn/Do0aOsXr2amJgYQkJCqFmzpgorFuLjIgFO/C25X9rq6jm3zo4dO4iMjKRXr15AzqKdDRs25NChQ9y/f59x48Zx8uRJOnXqpLKaCyttbW369++Pq6srq1atonPnzhw8eJAnT54wbNgwSpYsCeQdOyTh7XWZmZmEhISwcuVK+vXrx7FjxwgPD2fYsGHY2dnRpUsXMjIylDFcudfw2rVraGtro6Ojo8ryC5zchY9zu+qzsrK4dOkS6enpLFy4kAsXLmBvb6+EuGPHjrFp0yZCQ0O5efOmqsoW4qMjY+DEX2Zubk6rVq1YsWIFT58+VY5Pnz6dli1bYmlpSUREBCkpKQwcOJCkpCQaN25M48aNWbNmjYSLfyAgIIAaNWrw7bff8v3333Pjxg1atGiBj48Ptra2PHjwQNUlFhqffPIJtra2fPrppyxbtizPvpytW7dm9+7dtGnTJs82WFWrVuX27dsqrLpg6dOnDwsWLGDPnj0EBwcTHR3N06dPadiwIbt372bgwIHcvXuXSZMm0ahRI9avX09ISEiez5Axb0J8GBLgxF/m4+NDx44d2bFjB2vWrCEhIQHI6XL6/vvvqV27NqdPn8be3p74+PjX3i/de3/dq4O9X13TTVNTk02bNpGenv7eTdXF6/T19TE2Nn5tr1JLS0tlx5DcXQREXqVKlWLZsmW0bduWly9fsm/fPmrVqsX8+fM5ffo0Tk5OGBgY4OnpiZmZGV988QUWFhZMnTqV/fv3q7p8IT46EuDE3+Lp6Um7du04ePAgq1at4tmzZ2hqajJx4kSsrKzo27evtAr9B3R1denfvz89evSgfPnydOrUiYyMDFk76wPQ1tZm7dq1pKSk4OTkpOpyCrS2bdtibW1N/fr12bx5M1lZWYwcOZLLly9Tq1YtsrOz6dWrFwkJCdSqVYvOnTuzfPlyaXET4j8gY+DEX5I7s9HLy4vDhw/Tr18/nJycKFWqFBkZGezevRsTExPat2+v4koLBy0tLeXf9fT08rz2ps3UdXR0MDIy4tGjR3Ts2FGZbSrh7Z/T09OjR48ehISEULlyZUaNGgW8fTN7kbPG2/bt27l16xa2trYcOnQIKysrwsLCAKhQoQKlS5cG4Pr16wQGBpKVlaWMmRVCfDjSAifeqlq1aty6dQvIO25l7dq1dOzYkdu3b3PgwAHWrFnDkydPmDVrFu3atcPW1pbY2FhVll5gtW/fnuPHjyvXcsyYMbRr147ExERCQ0M5cuTIW1vWtLS0SE9PB2Qc0YdQtmxZ5s+fj4aGBg4ODkoolm7+92vZsiVffvkln376KW5ubpw/fx49PT309fV58OCBtAwLkQ/ksUi8kampKWfOnGHMmDFoaGgoYSEkJIRq1arRqlUrIiIisLCwYPjw4ejp6XHu3Dl+//13CW9vMWbMGPz8/Bg8eDAAX3zxBRMnTuTChQtUq1aN8ePHM27cOLS0tMjOzn6tJSg3vIGsnfUhPHr0iPHjx2NnZyfh7W86deoUK1as4O7du/j7+9OyZUtevHgh4U2IfCQtcOKtXFxcmDx5Mu7u7qxbt47g4GCqV6/O0KFDuXPnDpAzJq5t27YcP34cLy8v5b3yJf46IyMj5syZQ/ny5QkNDaVevXrs27ePyMhINDU18fb2plGjRhw6dIglS5aQnp4u1zGfyHX+Z1q2bImTkxOVK1dm5syZnDhxQtUlCVFkSIATedStW5dff/1V2cR79OjRzJo1i1u3bpGSksLQoUO5d+9entaKBQsWoKOjg7OzsypLL9ByuzwNDQ3x9/enTJkyGBkZMXz4cK5cuQLkjMlyd3dXQlxgYKBspi7y3d8Nsy1atGDq1Kncu3dPvgOEyEfShSoU1tbWREZGMmfOnDyrrE+ZMgVTU1PCw8O5d+8ekLPYae7A5IkTJ8oX9zuoqakpXZ5Pnjxh8uTJ3L9/nwoVKmBhYaGc9+LFC3x8fDh//jyDBw/G2tpaVSWLIiw3vLVq1YouXbpgbGys/K2/aYLH6dOncXd3Z+zYsflapxBFnaaqCxAFR+7sMTs7O/T09BgzZgxZWVkEBwejra2Nt7c38fHxrFq1CsgZhyVdT+/26vXp168f9+/f59SpU0ybNg11dXW6dOnCw4cP2bhxI5Czv+zcuXOJiYlh69atqixdFCHu7u48fvyYr7/+GgBvb28+//xz9PX1iYqKYseOHaxdu5aXL1++8W8+txVZvg+EyD8S4ITi9OnTREREEBkZyejRowkKCsLJyYmsrCy+/vpr1NXV8fb2Jjs7m6CgIAD5sn6P3Ovj6elJv379WLNmDdeuXePp06dMmzaNefPmKZMackPcixcvlB9SmW0q/mv6+vo0btwYLS0tkpKSuH37Ni1atGDYsGHEx8fj7OxMnz590NPTY+nSpW8NcSDfB0LkJxkDJ/JYv349mZmZLFmyhM2bN3Ps2DFGjRqlhIhRo0bh7e2No6Mj3377rYqrLRyGDx/OlClT6N+/P9evX8/zA2hoaIifnx9GRkbs3btXad0UIj+VLl0aPz8/DAwMuH37NikpKcyaNQvIWUTa3d2dJk2a8N133ykhTgihWjIGrghr0KABenp6aGtrK8dmz55N6dKlyc7OxtHRkc6dO7NixQplDMzKlSsZMWIE+/btU1XZhU7Dhg3ZvHkzP//8s7IBeK7cMXEZGRnUrFlTRRWKokxNTY34+HimTZtGUlISAwcOpE6dOsrrycnJ+Pj48OOPP9KpUyemTZumjJEVQqiOBLgiysrKiiNHjrB+/Xp8fX0xNTUFIDo6mvT0dDp16sSJEyewt7enU6dOLF++XAlxu3btIjMzU9mdQbxZo0aNgJyZvYaGhsAf67dlZ2ejra1NzZo1iY+Px8HBgUmTJqmsVlH05E5IyM7OxtjYmMePHzNhwgQOHDhA5cqVcXBwUM5JSUlh9uzZ/PbbbxgYGLz2ICKEyH8S4IooXV1dIGeDai0tLfbt24eXlxdNmzZl3rx52NraYmpqyvHjx7Gzs8Pa2ho3N7c8nyGLnr6dh4cHc+fOxdjYmIiICExNTfnss8/ynFOlShU8PDwwMzPj2bNnb1y8V4j/wqtj2CZOnEhgYCCNGjUiISEBd3d3fvnlF6ytrbG1tVXek5KSgpubGxMnTlRV2UKIV0iAK6I2b97MuHHjqF+/PqdOnWL8+PEkJSWxZs0aJk2aRLly5WjcuDEAJ0+epGPHjvj7+6u46sKhQYMGNG7cGA8PD2JjY/n+++8pU6YM9vb2NG/eHIDy5cszc+ZMSpYsya+//qq8VwaBi/yQe595eHjg6OjIhg0bePjwIQDx8fFMmTKFuLg4Bg4cyJAhQ5T3paWlyYOGEAWETGIo4pycnJg9ezbu7u4EBQVhbGyMg4MDjRs3xt3dnWvXruU5X7YbejdHR0fatWuHlpYWjo6OpKSkAGBhYcGECROUrtSkpCSys7Pp0qXLW/c+FeK/VLduXdauXcv06dM5cuSIcjz3b7x06dL4+vrSoEEDPD09CQ8PV2G1Qog/k5GoRVxQUBDZ2dnMnTsXPT09Fi9ezNy5c9HU1HzjTDMJb++WmZmJubk5L168oHr16vzyyy8AhIeHc+vWLSpUqECjRo24c+cOe/bsISsrS0KxyBd/fkgoUaIEJUqU4Oeff85zXmZmJtra2sTHx+Pu7o6joyOHDh3K73KFEO8hLXACyGk58vX15auvvmLp0qWqLqdQeFurWd++fZkzZw579+5l2bJl3L59+62fIeu8ifw2duxYYmJi+PXXX9m5cydffvklERERwB/3o6WlJfHx8Xn2NpV7VYiCRVrgPmL169fnyZMnxMbGKsfeFjrWrFlDdnY2s2fPRldXFz8/v/wstVDKvY716tWjePHiPH/+nBs3brBz5050dXWZOnUqKSkprFmzhjt37rzxM+QHUfzXXv2bHzx4MCNHjsTW1paEhARu3brFgAEDePz4MT///DNZWVmoq6vj4ODAtWvX8gQ4uVeFKFikBe4j1bVrV7y9vXn27BmXL18mODiYq1evKnuYvu3LeOzYsVhYWNCrV698rrjwaNiwIT/99BMAM2fOpGfPnhgZGXH//n3u37/PwIEDgZwtydzc3Ni1axfr16/nt99+U2XZoohr0qQJffr04caNG2zYsAHI+Z6YNWsWd+/e5fTp08TFxTFo0CBKly5Nhw4dpGtfiAJMAtxHzMjIiAoVKrBw4UISExO5efMmHh4epKamSnfIP2Rvb8/kyZPp0qULvXr1YtKkSdjb2/Ps2TOqV6/OlClTSElJoVOnTgDY2NiwaNEiPDw8lO3HhMhvdevW5bvvvkNdXR0fHx+WLVumvNamTRv69u2LhYUFd+7cIS4ujhEjRpCRkSHfE0IUYBLgioASJUpgY2ODtbU1qampDBo0iJSUFPly/pvs7Ozw9/fHwcGBffv2sXz5cu7fv8/s2bOBnK6qhg0bsnLlSo4dO8bkyZMB6Ny5MxEREXKthUr17duXuXPncuHCBTw9PYmKisrzup6eHpCzFy/IjHMhCjpZB+4j88knn2BkZJTnWFJSEmvXrmX+/Pno6uoSEhKCtra2BIq/wcrKigULFmBnZ6dsI1a+fPk8Ww5lZ2dz6dIlDhw4QM2aNSlWrBgAhw8fVsYWCfFfe3WHlFfvuZ07dzJr1iwaNGiAnZ0dVapUyXPeixcvlPAGMuNciIJOflE+In379iUkJISIiAg2bNhAw4YNgZyWoYyMDCIiIli8eDElSpRg5MiRKq628LC3t2f16tWvHT948CBlypShQ4cOeY7fuXMHPT09tLS08hyXwCzyQ27wGj58OIGBgaxcuZIJEyYAOQt4z507FysrKxwdHZUQJ/emEIWPBLiPxODBg1m4cCGHDx/G3d2dBg0aMGzYMOCP2ZJZWVkcPnyYCxcu0KFDB3R0dFRYceEwbNgwZWsxX19fgoOD6devH5AT4DIzM3F0dKRXr16oqalRqlQpLC0tuX37NomJiSquXhQlgwYNwtXVFQBPT0+mTJnCkydPKFGiBAMGDODw4cOoqamxceNGfH19sbS0ZPz48VSoUEG1hQsh/hEZA/cRaNOmDStWrGDGjBns3r0bAAcHB0xMTFizZg1PnjxRdgSAnG7WEydOsGzZMlauXKmiqgu+du3asWHDBkaPHq10m86YMYPRo0fj4uLCtm3bqFmzprLnqYGBAQ8ePEBDQ4NOnTrJht8i39jb2zN//nwGDx5MTEwMW7ZswcXFhePHjwM5M1AXLVrE06dP6d27N5DTQtehQwfs7OxkFxAhCiEJcIWcuro6AwcOxNDQkLVr15KcnAzA7t27MTY2xtDQkJ9//pkffviBBQsWKO/74osvqFGjBlOmTFFV6QVeyZIlMTEx4eeff84zoHvGjBmMGTMGFxcXtm7dStmyZalUqRLNmzfn999/lx0WRL4aPHgwixYtYvjw4ezfvx9zc3NWr15N27Zt+f3334Gc74l27doxd+5cpk2bRmRkZJ7PkK3chCh8ZCHfQi4rK4u9e/dSsmRJJbytX7+eqlWr4urqSkJCAgMHDqR79+7s2bNHmXl27do16tati46ODmlpaar8XyiwEhISaNy4Mfr6+nm6Q729vQEICAggKyuL0NBQHj16xMWLF5Vz1NXVJbyJ/9yAAQNYsmQJa9asYf/+/QD8+uuvPHv2DHNzczZv3gzkfE9cuXKFkiVLYmxs/NrnSHgTovCRAPcRSExMVAKGlpYW+/btw93dnZiYGACeP3+Oo6MjVatWVQLciRMniI2NlfD2Do0bN8bX1xcnJycuXbqUZ9mV3BC3aNEidHR02LhxY573yqBw8V+zt7fHz8+P7777DhsbGy5cuMC2bdt4/vw5V69excrKitjYWI4ePQpAamoqsbGxyoOeEKJwky7UIqBu3brMnz+fiRMncu3aNVWXU2hoaGhw9OhRLl68yNixY994zrx586hVq5YyrkiI/DBkyBAWL16Mvb09+/fvV8Zmurq6snXrVqpXr05gYCAvX77kp59+4tKlS9ja2io7LMgDhhCFnwS4j5y2tjZr165FU1OTwYMHS1fJW/x5DJCmpiYZGRlYWFjg7u6Oq6srFy5cUGGFQuQoVqwYixcvJiwsjAMHDijHPTw8cHZ2xtXVlS1btlC1alXs7e3p3LkzSUlJxMXF4ejoKDssCPGRkAD3kdLV1aVdu3YMHToUExMTOnToQEZGhgxWfo9mzZpx9uxZ5b+rV69OSEgIISEhrFq1SoWVCfH+yQZ/DnGQ05Ksp6fH8+fPlf+W8ZlCFH6yDtxHSldXlz59+pCSkoK5uTkZGRloaGhIePuTYsWKoa+vD0DTpk0JCwsjLCyMESNGYGBgwM2bN1mzZg0uLi5Uq1ZNxdWKoi7379fGxgZPT08gJ9Tl8vHxITAwkIULFyrrFWZmZirhLfe/hRCFn0xi+Eg9fvyYKVOm8OzZM0BmRb6JpaUlAwYMoGbNmhw8eJDvvvuOJk2a4ObmRu/evXF1dcXf35/ExEROnjxJs2bNuHXrlnQ/CZVr1qwZ9evXB16fQerj40NWVhYrVqzg8ePHry0ZIoT4OEgXahEg3aavs7e3x8vLi+3bt6OtrU3fvn05deoUAwcORF1dHT09PUaNGkWjRo2oUaMGJiYmnDp1SiYrCJXK/Vs2NDTk6NGjBAQEEBQU9MZz7e3t2bhxozy4CfGRkgAnipwhQ4Ywb948hg8fTnh4OADt27dn+/btfPHFF4SFhSnnGhsbU7lyZcaMGUOjRo3w8fFR1tYSQlWKFSuGt7c3+vr6jBo16p3nypg3IT5OMgZOFCllypRh8eLF/Pjjj0rXkpqaGhcvXiQmJgZdXV3lGEBsbCynTp3C2dmZH3/8kebNm6uqdFGEjRgxgoCAAMzMzNDS0iI1NZW9e/fSp08fzM3N3/leCW9CfJwkwIki5fHjx9jZ2dGsWTO8vLwoV64c2dnZtG/fnooVK3Lp0iUg77gidXV1EhISCA0NpX379hgZGamoelFUNGjQgJ49e9KzZ08qVapESkoKLVq0YMmSJWzcuJF69epx5swZVqxYgY2NjTIRRwhRdMgkBlHkHDhwAEdHR9avX8+zZ8+4c+cOvr6+jBs37o0LHedOWGjWrBmJiYmkpKTkd8miCLGxscHd3Z2XL19SqVIlDh48iKenJ5s2baJHjx7079+fTZs2cfHiRUqWLImOjo6y3ZuMdxWi6JAxcKLI6tGjByEhIQDMnDmTFStWvPVcDQ0N1q1bx4IFC5RWOiE+tCFDhrBgwQKcnJy4fPkyJiYmfPPNN2zbto3x48cr53Xt2pW6desycuRIDA0N2bRpE66urqorXAiR7yTAiSLN3Nyc0NBQVq5cSUBAAI8fP1Z1SaKIsrKyYvXq1YwdO5YtW7YorWlz586lY8eOWFhYkJCQkOc9xsbGODk58b///Q8nJycePnyomuKFEPlOxsCJIi0yMhI7OztGjhyJq6sr5cqVU3VJoohKTEwEoEaNGpQvX17pCtXU1CQhIeG1yQhqamrExsYSFBREw4YN3zuZQQjxcZEAJz5Kr65O/65jkDMmLjfE9enT5z+uTIjXqampERERga2tLePGjVO6S7t164atrS0LFy5UAl6u7OxsJcT9+OOPlC5dWhWlCyFURLpQxUdHS0uL9PR0IKc1IyMjg5iYmPfuBdu8eXPOnTsnyy4IlbKwsGDjxo0cPXqUhg0b4uXlxcaNG9+6A0hu12vLli25efOmCioWQqiCBDjx0Zg9ezb+/v48ffoUgBkzZjBo0CBevnxJfHw8Q4YM4cGDB+/9HFn4VKha586d2bx5M2fOnGHIkCHKlnhvUrx4ccqXL8/t27fzsUIhhKpJF6r4KBgbG9O7d2/CwsLQ19enTZs29O/fH1dXVzw9PUlMTOTQoUOYmZm997MkvAlVO3z4MIMHD6Z58+ZMnTqVMmXKvPE8dXV1UlJSJLwJUQRJC5z4aNSsWZMVK1agqanJypUrKVGihLJPpKGhIcuXL6du3bpYW1tz48YNFVcriqK2bduSmJiYZymad3XrW1hYsG7dOnbt2sW0adPe2RInhChapAVOFHq5kxOioqIYNWoUaWlpLFmyhLJlyyrnPHnyhC+//JLLly+zdetW6tatq6pyRRHVunVr3NzcCAoKYvXq1VhaWqKlpUV2djYaGhpvfE94eDijRo2icuXKPH/+PJ8rFkIUZNICJwq1Tz/9lJiYGAD69OlDeHg4JiYm+Pn5YWxsTPfu3Xny5IlyfqlSpdi2bRsPHjxg6NChqipbFFE6OjqULVsWb29vSpcuTWpqKg4ODiQnJ79xksKfW+dkpwUhRC4JcKLQatmyJR4eHgQEBNCuXTtGjhxJw4YNiY2NVbpTdXR06NGjR57WC319fZKSkuSHUOSbYsWKkZqaqvx38eLFad++PRMmTKBUqVJ069aNJ0+evHWmqRBC/JkEOFHolC5dmvj4eExMTJg3bx61atVCX1+fnj17cv36deW8mjVrsnLlSrS0tOjZs+drXVDSmiHyg5WVFVWrVuWbb77h4cOHee47MzMzFi1aRMmSJenYsWOekCeEEO8iY+BEoeLv78+oUaNQV1cnOjqas2fPUqZMGW7dukW1atXynPvqmLizZ8+ip6eX53UJb+K/NmTIEAIDA3n58qWyNuGr992NGzeYPHkyiYmJ+Pj4vHUsnBBC/JkEOFGo/PDDD8ybN4+srCy0tbU5ePAggwcPJi4ujhEjRtC3b98850dFReHs7Mzhw4dJSUlRUdWiKGrcuDFTp05l3LhxLF++nOTkZAwNDSlVqlSe865du8b27dupVq0aFStWVFG1QojCRgKcKFR2795NRkYGNjY2rFq1ioSEBI4fP46npycpKSnY2dlhZWWlnO/k5MTt27dxdnYmKysLdXW55UX+KFOmDJcvX2bXrl3UrVuX4OBg9u3bx9atW/H391fOy8zMZPPmzZQrVw4HBwcVViyEKEzk10wUCn/ex7REiRIYGxszffp0KlasyG+//Ya7uzvJyck4OjoyY8YMNm3axKRJk5SuK0AGiIt8U6dOHcqWLUvx4sVZuXIlt2/fZu7cuezfv5+mTZuyceNG5dykpCS8vLyoXLky+vr6KqxaCFFYSIAThULuuCFra2vq1q3LqlWr2Lp1K1WrVsXd3Z2KFSty69Ytpk+fTlRUFP/73/+AnB/RrKyst25kL8R/5dixY6SnpzNmzBju3LnDvHnzCAsLY+nSpfj7+1OxYkVat26tnH/v3j3u3bunwoqFEIWJzEIVhUbx4sU5efIkZ86cYdSoUUBOF2mfPn24e/cus2fP5v79++jp6ZGdnU1ycjIge5sK1TAyMiIkJAQzMzOioqLo1q2b8lqZMmU4fvw4s2bNYuvWrcrxihUrcv/+fVWUK4QoZKQFThRYr7aaqampkZKSgpOTE127dsXGxgaAoKAgdu7ciYmJCdOmTaNSpUq8ePFCCW8ge5sK1Xj48CGurq68fPmSxo0bM2jQIOW15ORkbt68ydOnT4E/7nUJb0KIv0pa4ESBZ29vz6NHjzh37hwPHz7E09OTGjVq4OPjo6z75uDgwMiRIwkNDWXBggUqrliIP5iZmbFp0yaSk5M5c+YMp0+fZsiQIRgYGNClSxcZlymE+EckwIkCrUaNGhw9epSHDx9y/vx5li5dSlJSEqtWrWLt2rV5BoL36tWL/fv3yw+iKHCqVKmCvb09HTt2JCEhgfj4eJycnMjIyJDdF4QQ/4gEOFGg6evr4+npSb169QgLC8Pd3R0XFxe6dOmCubk5HTt2JDY2Ns975AdRFFSamppoa2vL+EwhxL8mY+BEgdS1a1dq1KhBYmIiS5YsoUqVKsTExNC7d2+sra3JyMjA0NAQPz8/dHV187xXwpsoqDIyMmR8phDig5AAJwqc2rVrM3bsWHbv3o2VlRXR0dFMmDABR0dHHj16xMSJEzl69CiPHj3CwMAgzw+iEEIIURRIF6ookKpVq4a1tTXOzs6EhoYSFRWFkZER9+/fJzg4GMhZViQtLU1a3IQQQhQ5EuBEgda5c2f69euHqakp1apV4969ewwZMiTPgqcy5k0IIURRIwFOFHgVK1akYcOGTJo0iXr16rFq1Src3d1VXZYQQgihMhLghEqoqamRnZ39t1rPSpQogaOjI4GBgTL4WwghRJEmAU7kux49elCnTh3WrVvH48eP/9J7/hz0ZPkFIYQQRZkEOJGvypcvT2RkJElJSaipqbFlyxYuXLjAkSNHlHNkTJsQQgjxbpqqLkAULcnJyZw4cYI9e/YQFxdHz549WbVqFTt37uTkyZPs2rVLwpsQQgjxHrIOnMhXz58/Jzw8HF9fX+7evYuHhwetW7dGX1+fwMBA9u7dS69evTAxMVF1qUIIIUSBJQFO/Oc0NXMaetXVc263HTt2EBkZSa9evQB48OABDRs25NChQ9y/f59x48Zx8uRJOnXqpLKahRBCiIJMulDFf8rc3JxWrVqxYsUKnj59CuRsHxQdHY2lpSWrVq0iIiKC+Ph4nJ2dSUpKonHjxjRu3JjIyEjVFi+EEEIUUNICJ/5TnTt3plevXgwfPpySJUsqx/38/DAwMODRo0e8ePGCoUOHkpSUBMD58+dZtWoVmZmZaGhoqKhyIYQQouCSACf+Ux4eHoSHh9OjRw+cnJwwMDAActaB27dvH7/++itOTk7Ex8e/8f2yVIgQQgjxOglw4j+T23rm5eXF4cOH6devH05OTpQqVYqMjAx2796NiYkJ7du3V3GlQgghROEiAU58UNWqVVP+PTv7jyUGa9SoQbly5ejZsydOTk4YGhpy48YNVq9ezciRIzE2NlZFuUIIIUShJAFOfDCmpqacOXOGMWPGoKGhoaznFhISQrVq1WjVqhURERFYWFgwfPhw9PT0OHfuHL///juxsbEqrl4IIYQoPGQWqvhgfvvtN3x8fJg+fTovXrxg3bp1BAcHU61aNYYOHUpsbCze3t6oq6tjYWGBrq4uXl5e7N27F/hjf1QhhBBCvJtspSX+tbp16/Lrr7/y8uVLAEaPHs2sWbO4desWKSkpDB06lHv37uXZv3TBggXo6Ojg7OysytKFEEKIQkm6UMW/Ym1tTWRkJHPmzFEW7F2+fDlTpkzB1NSU8PBw7t27B+TMKM1dzHfixIkS3oQQQoh/SLpQxb9SunRpAOzs7NDT02PMmDFkZWURHByMtrY23t7exMfHs2rVKgCysrKkq1QIIYT4lyTAiX/l9OnTREREEBkZyejRowkKCsLJyYmsrCy+/vpr1NXV8fb2Jjs7m6CgIAAJb0IIIcS/JF2o4l/55ZdfSEtLo1mzZtjZ2dG6dWtWrlypdJWuWLECT09P5syZQ+/evVVcrRBCCPFxkAAn/pYGDRqgp6eHtra2cmz27NmULl2a7OxsHB0d6dy5MytWrFBC3MqVKxkxYgT79u1TVdlCCCHER0UCnPjLrKysOHLkCOvXr8fX1xdTU1MAoqOjSU9Pp1OnTpw4cQJ7e3s6derE8uXLlRC3a9cu2dtUCCGE+EAkwIm/TFdXF4BSpUqhpaXFvn378PLyomnTpsybNw9bW1tMTU05fvw4dnZ2WFtb4+bmluczZG9TIYQQ4t+TSQziL9u8eTMAS5YsYfXq1ezfv5969eqxZs0aLl26RLly5WjcuDG//fYbJ0+epGPHjly5ckXFVQshhBAfH2mBE3/L5s2bmT59OosXL6ZSpUrMnz+f9u3bc+nSJU6fPs0vv/yinPvLL7+QlZUl3aZCCCHEByYtcOJvCwoKIjs7m7lz56Knp8fixYuZO3cumpqaym4Mr5JuUyGEEOLDkgAn/pHVq1eTnZ2Nr68vmZmZLF269I3hTQghhBAfngQ4kUf9+vV58uQJsbGxyrG37ZywZs0asrOzmT17Nrq6uvj5+eVnqUIIIUSRJZvZC0XXrl3x9vbm2bNnXL58meDgYK5evarsYZqVlfXG940dOxYLCwt69eqVzxULIYQQRZMEOJGHkZERFSpUYOHChSQmJnLz5k08PDxITU19Z4gTQgghRP6RACfyyO0uLVGiBDY2NlhbW5OamsqgQYNISUmRECeEEEIUABLgBE2aNCE1NZXLly8DoKGhQWZmJpqampibmzNlyhSePn2Kra2tTFQQQgghCgBZB66Ia9myJQcOHGDs2LF89tlnQM6yH2pqamRkZBAREcHixYspUaIEI0eOVG2xQgghhAAkwBV5RkZGpKenU65cOUaMGEGDBg0AyM7ORk1NjaysLA4fPsyFCxfo0KEDOjo6Kq5YCCGEEBLgirjz58+za9cugoODMTMzY/To0ZiYmAA54+EA0tLSmDdvHjVq1MDBwUGV5QohhBACCXBFnoaGBs2bNyciIoIlS5ZQpUoVpk2bxq1bt/Dy8gJAU1OT58+fExAQQNWqVVVcsRBCCCFkId8iTE1Njbt373L9+nVMTEwICwtDQ0ODRYsWkZiYyJEjRwDIyMgA4Nq1a9StWxcdHR3S0tJUWboQQghRpEmAK8Jyd1dQU1OjQYMGXLlyhbFjx3L//n1SU1Pp27cviYmJnD9/HoATJ04QGxsr4U0IIYRQMelCFZw7d45q1aoRHh5OYmIibdq0YdGiRbRt2xZzc/M8596+fVs1RQohhBBCIS1wgsuXL/PNN99w4sQJnJycyMrKYs+ePSQkJHDixAlVlyeEEEKIP5GFfAU6Ojp06tSJs2fP8vjx49del90XhBBCiIJFApwQQgghRCEjY+CEEEIIIQoZCXBCCCGEEIWMBDghhBBCiEJGApwQQgghRCEjAU4IIYQQopCRACeEEEIIUchIgBNCCCGEKGQkwAkhhBBCFDIS4IQQQgghChkJcEIIIYQQhYwEOCGEEEKIQkYCnBBCCCFEISMBTgghhBCikPk/k9WOrbc+RNkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "#embeddings_cuda = embeddings.to(torch.device(\"cuda\"))\n", + "\n", + "functions = {\n", + " \"1) MHA wrapper class\": mha_ch03_wrapper,\n", + " \"2) MHA Ch03\": mha_ch03,\n", + " \"3) MHA with combined QKV weights\": mha_combined_qkv,\n", + " \"4) MHA with PyTorch scaled_dot_product_attention\": mha_pytorch_scaled,\n", + " \"5) PyTorch MHA class defaults\": mha_pytorch_class_default,\n", + " \"6) PyTorch MHA with need_weights=False\": mha_pytorch_class_noweights\n", + "}\n", + "execution_times = [time_pytorch_function(fn, embeddings) for name,fn in functions.items()]\n", + "\n", + "\n", + "# Plotting\n", + "\n", + "# Customize further for dark mode aesthetics\n", + "plt.rcParams['figure.facecolor'] = '#121212' # Dark figure background\n", + "plt.rcParams['axes.facecolor'] = '#121212' # Dark axes background\n", + "plt.rcParams['axes.edgecolor'] = 'white' # White axes border\n", + "plt.rcParams['axes.labelcolor'] = 'white' # White labels\n", + "plt.rcParams['text.color'] = 'white' # White text\n", + "plt.rcParams['xtick.color'] = 'white' # White x ticks\n", + "plt.rcParams['ytick.color'] = 'white' # White y ticks\n", + "plt.rcParams['grid.color'] = '#444444' # Lighter grid lines for contrast\n", + "plt.rcParams['lines.linewidth'] = 2 # Thicker plot lines for visibility\n", + "plt.rcParams['lines.markersize'] = 8 # Larger markers for visibility\n", + "\n", + "fig, ax = plt.subplots()\n", + "bars = plt.bar(functions.keys(), execution_times)\n", + "\n", + "plt.ylabel('Execution time (ms)')\n", + "plt.xticks(rotation=45, ha=\"right\")\n", + "\n", + "# Calculate new ylim with a margin\n", + "max_execution_time = max(execution_times)\n", + "upper_ylim = max_execution_time + 0.2 * max_execution_time # Adding a 20% margin\n", + "\n", + "plt.ylim(0, upper_ylim) # Setting new ylim\n", + "\n", + "# Annotate bars with execution times\n", + "for bar in bars:\n", + " yval = bar.get_height()\n", + " plt.text(bar.get_x() + bar.get_width()/2, yval + (0.05 * upper_ylim), round(yval, 2), ha='center', va='bottom')\n", + "\n", + "\n", + "plt.tight_layout()\n", + "plt.savefig(\"2.pdf\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d3e1137b-9acc-4cc5-bcbf-0e8533839f06", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "A100", + "machine_shape": "hm", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ch05/02_hparam_tuning/hparam_search.py b/ch05/02_bonus_hparam_tuning/hparam_search.py similarity index 100% rename from ch05/02_hparam_tuning/hparam_search.py rename to ch05/02_bonus_hparam_tuning/hparam_search.py diff --git a/ch05/02_hparam_tuning/previous_chapters.py b/ch05/02_bonus_hparam_tuning/previous_chapters.py similarity index 100% rename from ch05/02_hparam_tuning/previous_chapters.py rename to ch05/02_bonus_hparam_tuning/previous_chapters.py diff --git a/ch05/02_hparam_tuning/the-verdict.txt b/ch05/02_bonus_hparam_tuning/the-verdict.txt similarity index 100% rename from ch05/02_hparam_tuning/the-verdict.txt rename to ch05/02_bonus_hparam_tuning/the-verdict.txt diff --git a/ch05/03_bonus_pretraining_on_gutenberg/README.md b/ch05/03_bonus_pretraining_on_gutenberg/README.md new file mode 100644 index 0000000..1c0f94d --- /dev/null +++ b/ch05/03_bonus_pretraining_on_gutenberg/README.md @@ -0,0 +1,121 @@ +# Pretraining GPT on the Project Gutenberg Dataset + +The code in this directory contains code for training a small GPT model on the free books provided by Project Gutenberg. + +As the Project Gutenberg website states, "the vast majority of Project Gutenberg eBooks are in the public domain in the US." + +Please read the [Project Gutenberg Permissions, Licensing and other Common Requests](https://www.gutenberg.org/policy/permission.html) page for more information about using the resources provided by Project Gutenberg. + +  +## How to use this code + +  + +### 1) Download the dataset + +As of this writing, this will require approximately 50 GB of disk space, but it may be more depending on how much Project Gutenberg grew since then. + +Follow these steps to download the dataset: + + +1. `git clone https://github.com/pgcorpus/gutenberg.git` + +2. `cd gutenberg` + +3. `pip install -r requirements.txt` + +4. `python get_data.py` + +5. `cd ..` + +  +### 2) Prepare the dataset + +Next, run the `prepare_dataset.py` script, which concatenates the (as of this writing, 60,173) text files into fewer larger files so that they can be more efficiently transferred and accessed: + +``` +prepare_dataset.py \ + --data_dir "gutenberg/data" \ + --max_size_mb 500 \ + --output_dir "gutenberg_preprocessed" +``` + +> [!TIP] +> Note that the produced files are stored in plaintext format and are not pre-tokenized for simplicity. However, you may want to update the codes to store the dataset in a pre-tokenized form to save computation time if you are planning to use the dataset more often or train for multiple epochs. See the *Design Decisions and Improvements* at the bottom of this page for more information. + +> [!TIP] +> You can choose smaller file sizes, for example, 50 MB. This will result in more files but might be useful for quicker pretraining runs on a small number of files for testing purposes. + + +  +### 3) Run the pretraining script + +You can run the pretraining script as follows. Note that the additional command line arguments are shown with the default values for illustration purposes: + +```bash +pretraining_simple.py \ + --data_dir "gutenberg_preprocessed" \ + --n_epochs 1 \ + --batch_size 4 \ + --output_dir model_checkpoints +``` + +The output will be formatted in the following way: + +``` +Total files: 3 +Tokenizing file 1 of 3: data_small/combined_1.txt +Training ... +Ep 1 (Step 0): Train loss 9.694, Val loss 9.724 +Ep 1 (Step 100): Train loss 6.672, Val loss 6.683 +Ep 1 (Step 200): Train loss 6.543, Val loss 6.434 +Ep 1 (Step 300): Train loss 5.772, Val loss 6.313 +Ep 1 (Step 400): Train loss 5.547, Val loss 6.249 +Ep 1 (Step 500): Train loss 6.182, Val loss 6.155 +Ep 1 (Step 600): Train loss 5.742, Val loss 6.122 +Ep 1 (Step 700): Train loss 6.309, Val loss 5.984 +Ep 1 (Step 800): Train loss 5.435, Val loss 5.975 +Ep 1 (Step 900): Train loss 5.582, Val loss 5.935 +... +Ep 1 (Step 31900): Train loss 3.664, Val loss 3.946 +Ep 1 (Step 32000): Train loss 3.493, Val loss 3.939 +Ep 1 (Step 32100): Train loss 3.940, Val loss 3.961 +Saved model_checkpoints/model_pg_32188.pth +Book processed 3h 46m 55s +Total time elapsed 3h 46m 55s +ETA for remaining books: 7h 33m 50s +Tokenizing file 2 of 3: data_small/combined_2.txt +Training ... +Ep 1 (Step 32200): Train loss 2.982, Val loss 4.094 +Ep 1 (Step 32300): Train loss 3.920, Val loss 4.097 +... +``` + + +  +> [!TIP] +> In practice, if you are using macOS or Linux, I recommend using the `tee` command to save the log outputs to a `log.txt` file in addition to printing them on the terminal: + +```bash +python -u pretraining_simple.py | tee log.txt +``` + +  +> [!WARNING] +> Note that training on 1 of the ~500 Mb text files in the `gutenberg_preprocessed` folder will take approximately 4 hours on a V100 GPU. +> The folder contains 47 files and will take approximately 200 hours (more than 1 week) to complete. You may want to run it on a smaller number of files. + + +  +## Design Decisions and Improvements + +Note that this code focuses on keeping things simple and minimal for educational purposes. The code could be improved in the following ways to improve modeling performance and training efficiency: + +1. Modify the `prepare_dataset.py` script to strip the Gutenberg boilerplate text from each book file. +2. Update the data preparation and loading utilities to pre-tokenize the dataset and save it in a tokenized form so that it doesn't have to be re-tokenized each time when calling the pretraining script. +3. Update the `train_model_simple` script by adding the features introduced in [Appendix D: Adding Bells and Whistles to the Training Loop](../../appendix-D/01_main-chapter-code/appendix-D.ipynb), namely, cosine decay, linear warmup, and gradient clipping. +4. Update the pretraining script to save the optimizer state (see section *5.4 Loading and saving weights in PyTorch* in chapter 5; [ch05.ipynb](../../ch05/01_main-chapter-code/ch05.ipynb)) and add the option to load an existing model and optimizer checkpoint and continue training if the training run was interrupted. +5. Add a more advanced logger (for example, Weights and Biases) to view the loss and validation curves live +6. Add distributed data parallelism (DDP) and train the model on multiple GPUs (see section *A.9.3 Training with multiple GPUs* in appendix A; [DDP-script.py](../../appendix-A/03_main-chapter-code/DDP-script.py)). +7. Swap the from scratch `MultiheadAttention` class in the `previous_chapter.py` script with the efficient `MHAPyTorchScaledDotProduct` class implemented in the [Efficient Multi-Head Attention Implementations](../../ch03/02_bonus_efficient-multihead-attention/mha-implementations.ipynb) bonus section, which uses Flash Attention via PyTorch's `nn.functional.scaled_dot_product_attention` function. + diff --git a/ch05/03_bonus_pretraining_on_gutenberg/prepare_dataset.py b/ch05/03_bonus_pretraining_on_gutenberg/prepare_dataset.py new file mode 100644 index 0000000..5548b58 --- /dev/null +++ b/ch05/03_bonus_pretraining_on_gutenberg/prepare_dataset.py @@ -0,0 +1,66 @@ +# -*- coding: utf-8 -*- +""" +Script that processes the Project Gutenberg files into fewer larger files. +""" + +import argparse +import os + + +def combine_files(file_paths, target_dir, max_size_mb=500, separator="<|endoftext|>", fallback_encoding="latin1"): + if not os.path.exists(target_dir): + os.makedirs(target_dir) + + current_content = [] + current_size = 0 + file_counter = 1 + + for file_path in file_paths: + try: + with open(file_path, "r", encoding="utf-8") as file: + content = file.read() + except UnicodeDecodeError: + # Attempt to read the file with a fallback encoding + print(f"Warning: UnicodeDecodeError encountered. Trying fallback encoding for {file_path}") + with open(file_path, "r", encoding=fallback_encoding) as file: + content = file.read() + + estimated_size = len(content.encode("utf-8")) + + if current_size + estimated_size > max_size_mb * 1024 * 1024: + target_file_path = os.path.join(target_dir, f"combined_{file_counter}.txt") + with open(target_file_path, "w", encoding="utf-8") as target_file: + target_file.write(separator.join(current_content)) + file_counter += 1 + current_content = [content] + current_size = estimated_size + else: + current_content.append(content) + current_size += estimated_size + + if current_content: + target_file_path = os.path.join(target_dir, f"combined_{file_counter}.txt") + with open(target_file_path, "w", encoding="utf-8") as target_file: + target_file.write(separator.join(current_content)) + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser(description="GPT Model Training Configuration") + + parser.add_argument("--data_dir", type=str, default="gutenberg/data", + help="Directory containing the downloaded raw training data") + parser.add_argument("--max_size_mb", type=int, default=500, + help="The maximum file size for each concatenated file in megabytes") + parser.add_argument("--output_dir", type=str, default="gutenberg_preprocessed", + help="Directory where the preprocessed data will be saved") + + args = parser.parse_args() + + all_files = [os.path.join(path, name) for path, subdirs, files in os.walk(args.data_dir) + for name in files if name.endswith((".txt", ".txt.utf8")) and "raw" not in path] + + target_dir = "path_to_your_large_files" + print(f"{len(all_files)} files to process.") + + combine_files(all_files, args.output_dir) \ No newline at end of file diff --git a/ch05/03_bonus_pretraining_on_gutenberg/pretraining_simple.py b/ch05/03_bonus_pretraining_on_gutenberg/pretraining_simple.py new file mode 100644 index 0000000..8a738d5 --- /dev/null +++ b/ch05/03_bonus_pretraining_on_gutenberg/pretraining_simple.py @@ -0,0 +1,212 @@ +# -*- coding: utf-8 -*- +""" +Script for pretraining a small GPT-2 124M parameter model +on books from Project Gutenberg. + +Before running this script, make sure you downloaded and +processed the dataset as described in the README.md. +""" + +import argparse +import os +from pathlib import Path +import time +import torch +from previous_chapters import ( + create_dataloader_v1, + GPTModel, + generate_and_print_sample, + calc_loss_batch, + evaluate_model, + plot_losses +) + + +def read_text_file(file_path): + with open(file_path, "r", encoding="utf-8") as file: + text_data = file.read() + return text_data + + +def create_dataloaders(text_data, train_ratio, batch_size, max_length, stride): + split_idx = int(train_ratio * len(text_data)) + train_loader = create_dataloader_v1( + text_data[:split_idx], + batch_size=batch_size, + max_length=max_length, + stride=stride, + drop_last=True, + shuffle=True + ) + val_loader = create_dataloader_v1( + text_data[split_idx:], + batch_size=batch_size, + max_length=max_length, + stride=stride, + drop_last=False, + shuffle=False + ) + return train_loader, val_loader + + +def convert_time(seconds): + hours, rem = divmod(seconds, 3600) + minutes, seconds = divmod(rem, 60) + return int(hours), int(minutes), int(seconds) + + +def print_eta(start_time, book_start_time, index, total_files): + book_end_time = time.time() # End time of processing this book + elapsed_time = book_end_time - book_start_time + total_elapsed_time = book_end_time - start_time + books_remaining = total_files - index + average_time_per_book = total_elapsed_time / index + eta = average_time_per_book * books_remaining + + book_h, book_m, book_s = convert_time(elapsed_time) + total_h, total_m, total_s = convert_time(total_elapsed_time) + eta_h, eta_m, eta_s = convert_time(eta) + + print(f"Book processed {book_h}h {book_m}m {book_s}s" + f"\nTotal time elapsed {total_h}h {total_m}m {total_s}s" + f"\nETA for remaining books: {eta_h}h {eta_m}m {eta_s}s") + + +def train_model_simple(model, optimizer, device, n_epochs, + eval_freq, eval_iter, print_sample_iter, start_context, + output_dir, save_ckpt_freq, + batch_size=1024, train_ratio=0.90): + + train_losses, val_losses, track_tokens_seen = [], [], [] + tokens_seen = 0 + global_step = -1 + start_time = time.time() + + try: + for epoch in range(n_epochs): + + # Iterate over the books in the training corpus + for index, file_path in enumerate(all_files, 1): + book_start_time = time.time() + text_data = read_text_file(file_path) + " <|endoftext|> " + print(f"Tokenizing file {index} of {total_files}: {file_path}") + + # Initialize new data loaders for each book + train_loader, val_loader = create_dataloaders( + text_data, + train_ratio=train_ratio, + batch_size=batch_size, + max_length=GPT_CONFIG_124M["ctx_len"], + stride=GPT_CONFIG_124M["ctx_len"] + ) + print(f"Training ...") + model.train() + for input_batch, target_batch in train_loader: + optimizer.zero_grad() + loss = calc_loss_batch(input_batch, target_batch, model, device) + loss.backward() + optimizer.step() + tokens_seen += input_batch.numel() + global_step += 1 + + # Optional evaluation step + if global_step % eval_freq == 0: + train_loss, val_loss = evaluate_model( + model, train_loader, val_loader, device, eval_iter) + train_losses.append(train_loss) + val_losses.append(val_loss) + track_tokens_seen.append(tokens_seen) + print(f"Ep {epoch+1} (Step {global_step}): " + f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}") + + # Generate text passage + if index % print_sample_iter == 0: + generate_and_print_sample( + model, train_loader.dataset.tokenizer, device, start_context + ) + + if global_step % save_ckpt_freq: + file_name = output_dir / f"model_pg_{global_step}.pth" + torch.save(model.state_dict(), file_name) + print(f"Saved {file_name}") + + print_eta(start_time, book_start_time, index, total_files) + + except KeyboardInterrupt: + file_name = output_dir / f"model_pg_{global_step}_interrupted.pth" + torch.save(model.state_dict(), file_name) + print(f"Saved {file_name}") + + return train_losses, val_losses, tokens_seen + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser(description='GPT Model Training Configuration') + + parser.add_argument('--data_dir', type=str, default='gutenberg/data', + help='Directory containing the training data') + parser.add_argument('--output_dir', type=str, default='model_checkpoints', + help='Directory where the model checkpoints will be saved') + parser.add_argument('--n_epochs', type=int, default=1, + help='Number of epochs to train the model') + parser.add_argument('--print_sample_iter', type=int, default=500, + help='Iterations between printing sample outputs') + parser.add_argument('--eval_freq', type=int, default=100, + help='Frequency of evaluations during training') + parser.add_argument('--save_ckpt_freq', type=int, default=100_000, + help='Frequency of saving model checkpoints during training') + parser.add_argument('--lr', type=float, default=5e-4, + help='Learning rate for the optimizer') + parser.add_argument('--batch_size', type=int, default=4, + help='Batch size for training') + + args = parser.parse_args() + + GPT_CONFIG_124M = { + "vocab_size": 50257, # Vocabulary size + "ctx_len": 1024, # Context length + "emb_dim": 768, # Embedding dimension + "n_heads": 12, # Number of attention heads + "n_layers": 12, # Number of layers + "drop_rate": 0.1, # Dropout rate + "qkv_bias": False # Query-key-value bias + } + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + torch.manual_seed(123) + model = GPTModel(GPT_CONFIG_124M) + model.to(device) + optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=0.1) + + data_dir = args.data_dir + all_files = [os.path.join(path, name) for path, subdirs, files + in os.walk(data_dir) for name in files if name.endswith((".txt"))] + total_files = len(all_files) + + if total_files == 0: + print("No training text files found. Make sure you " + "selected the correct input directory") + quit() + print("Total files:", total_files) + + output_dir = Path(args.output_dir) + output_dir.mkdir(parents=True, exist_ok=True) + + train_losses, val_losses, tokens_seen = train_model_simple( + model, optimizer, device, + batch_size=args.batch_size, + n_epochs=args.n_epochs, + eval_freq=args.eval_freq, + eval_iter=1, + print_sample_iter=args.print_sample_iter, + output_dir=output_dir, + save_ckpt_freq=args.save_ckpt_freq, + start_context="Every effort moves you", + ) + + epochs_tensor = torch.linspace(1, args.n_epochs, len(train_losses)) + plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses, output_dir) + + torch.save(model.state_dict(), output_dir / "model_pg_final.pth") + print(f"Maximum GPU memory allocated: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB") diff --git a/ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py b/ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py new file mode 100644 index 0000000..0cd8d02 --- /dev/null +++ b/ch05/03_bonus_pretraining_on_gutenberg/previous_chapters.py @@ -0,0 +1,313 @@ +# This file collects all the relevant code that we covered thus far +# throughout Chapters 2-4. +# This file can be run as a standalone script. + +import tiktoken +import torch +import torch.nn as nn +from torch.utils.data import Dataset, DataLoader +import matplotlib.pyplot as plt + + + +##################################### +# Chapter 2 +##################################### + +class GPTDatasetV1(Dataset): + def __init__(self, txt, tokenizer, max_length, stride): + self.tokenizer = tokenizer + self.input_ids = [] + self.target_ids = [] + + token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'}) + + for i in range(0, len(token_ids) - max_length, stride): + input_chunk = token_ids[i:i + max_length] + target_chunk = token_ids[i + 1: i + max_length + 1] + self.input_ids.append(torch.tensor(input_chunk)) + self.target_ids.append(torch.tensor(target_chunk)) + + def __len__(self): + return len(self.input_ids) + + def __getitem__(self, idx): + return self.input_ids[idx], self.target_ids[idx] + + +def create_dataloader_v1(txt, batch_size=4, max_length=256, + stride=128, shuffle=True, drop_last=True): + tokenizer = tiktoken.get_encoding("gpt2") + dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) + dataloader = DataLoader( + dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last) + + return dataloader + + +##################################### +# Chapter 3 +##################################### + +class MultiHeadAttention(nn.Module): + def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False): + super().__init__() + assert d_out % num_heads == 0, "d_out must be divisible by n_heads" + + self.d_out = d_out + self.num_heads = num_heads + self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim + + self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) + self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) + self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) + self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs + self.dropout = nn.Dropout(dropout) + self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1)) + + def forward(self, x): + b, num_tokens, d_in = x.shape + + keys = self.W_key(x) # Shape: (b, num_tokens, d_out) + queries = self.W_query(x) + values = self.W_value(x) + + # We implicitly split the matrix by adding a `num_heads` dimension + # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) + keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) + values = values.view(b, num_tokens, self.num_heads, self.head_dim) + queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) + + # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) + keys = keys.transpose(1, 2) + queries = queries.transpose(1, 2) + values = values.transpose(1, 2) + + # Compute scaled dot-product attention (aka self-attention) with a causal mask + attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head + + # Original mask truncated to the number of tokens and converted to boolean + mask_bool = self.mask.bool()[:num_tokens, :num_tokens] + + # Use the mask to fill attention scores + attn_scores.masked_fill_(mask_bool, -torch.inf) + + attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) + attn_weights = self.dropout(attn_weights) + + # Shape: (b, num_tokens, num_heads, head_dim) + context_vec = (attn_weights @ values).transpose(1, 2) + + # Combine heads, where self.d_out = self.num_heads * self.head_dim + context_vec = context_vec.reshape(b, num_tokens, self.d_out) + context_vec = self.out_proj(context_vec) # optional projection + + return context_vec + + +##################################### +# Chapter 4 +##################################### + +class LayerNorm(nn.Module): + def __init__(self, emb_dim): + super().__init__() + self.eps = 1e-5 + self.scale = nn.Parameter(torch.ones(emb_dim)) + self.shift = nn.Parameter(torch.zeros(emb_dim)) + + def forward(self, x): + mean = x.mean(dim=-1, keepdim=True) + var = x.var(dim=-1, keepdim=True, unbiased=False) + norm_x = (x - mean) / torch.sqrt(var + self.eps) + return self.scale * norm_x + self.shift + + +class GELU(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x): + return 0.5 * x * (1 + torch.tanh( + torch.sqrt(torch.tensor(2.0 / torch.pi)) * + (x + 0.044715 * torch.pow(x, 3)) + )) + + +class FeedForward(nn.Module): + def __init__(self, cfg): + super().__init__() + self.layers = nn.Sequential( + nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), + GELU(), + nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), + nn.Dropout(cfg["drop_rate"]) + ) + + def forward(self, x): + return self.layers(x) + + +class TransformerBlock(nn.Module): + def __init__(self, cfg): + super().__init__() + self.att = MultiHeadAttention( + d_in=cfg["emb_dim"], + d_out=cfg["emb_dim"], + block_size=cfg["ctx_len"], + num_heads=cfg["n_heads"], + dropout=cfg["drop_rate"], + qkv_bias=cfg["qkv_bias"]) + self.ff = FeedForward(cfg) + self.norm1 = LayerNorm(cfg["emb_dim"]) + self.norm2 = LayerNorm(cfg["emb_dim"]) + self.drop_resid = nn.Dropout(cfg["drop_rate"]) + + def forward(self, x): + # Shortcut connection for attention block + shortcut = x + x = self.norm1(x) + x = self.att(x) # Shape [batch_size, num_tokens, emb_size] + x = self.drop_resid(x) + x = x + shortcut # Add the original input back + + # Shortcut connection for feed-forward block + shortcut = x + x = self.norm2(x) + x = self.ff(x) + x = self.drop_resid(x) + x = x + shortcut # Add the original input back + + return x + + +class GPTModel(nn.Module): + def __init__(self, cfg): + super().__init__() + self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) + self.pos_emb = nn.Embedding(cfg["ctx_len"], cfg["emb_dim"]) + self.drop_emb = nn.Dropout(cfg["drop_rate"]) + + self.trf_blocks = nn.Sequential( + *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) + + self.final_norm = LayerNorm(cfg["emb_dim"]) + self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) + + def forward(self, in_idx): + batch_size, seq_len = in_idx.shape + tok_embeds = self.tok_emb(in_idx) + pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) + x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] + x = self.drop_emb(x) + x = self.trf_blocks(x) + x = self.final_norm(x) + logits = self.out_head(x) + return logits + + +def generate_text_simple(model, idx, max_new_tokens, context_size): + # idx is (B, T) array of indices in the current context + for _ in range(max_new_tokens): + + # Crop current context if it exceeds the supported context size + # E.g., if LLM supports only 5 tokens, and the context size is 10 + # then only the last 5 tokens are used as context + idx_cond = idx[:, -context_size:] + + # Get the predictions + with torch.no_grad(): + logits = model(idx_cond) + + # Focus only on the last time step + # (batch, n_token, vocab_size) becomes (batch, vocab_size) + logits = logits[:, -1, :] + + # Get the idx of the vocab entry with the highest logits value + idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) + + # Append sampled index to the running sequence + idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1) + + return idx + + +##################################### +# Chapter 5 +#################################### + + +def calc_loss_batch(input_batch, target_batch, model, device): + input_batch, target_batch = input_batch.to(device), target_batch.to(device) + + logits = model(input_batch) + logits = logits.view(-1, logits.size(-1)) + loss = torch.nn.functional.cross_entropy(logits, target_batch.view(-1)) + return loss + + +def calc_loss_loader(data_loader, model, device, num_batches=None): + total_loss, batches_seen = 0., 0. + if num_batches is None: + num_batches = len(data_loader) + for i, (input_batch, target_batch) in enumerate(data_loader): + if i < num_batches: + loss = calc_loss_batch(input_batch, target_batch, model, device) + total_loss += loss.item() + batches_seen += 1 + else: + break + return total_loss / batches_seen + + +def evaluate_model(model, train_loader, val_loader, device, eval_iter): + model.eval() + with torch.no_grad(): + train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) + val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) + model.train() + return train_loss, val_loss + + +def generate_and_print_sample(model, tokenizer, device, start_context): + model.eval() + context_size = model.pos_emb.weight.shape[0] + encoded = text_to_token_ids(start_context, tokenizer).to(device) + with torch.no_grad(): + token_ids = generate_text_simple(model=model, idx=encoded, + max_new_tokens=50, context_size=context_size) + decoded_text = token_ids_to_text(token_ids, tokenizer) + print(decoded_text.replace("\n", " ")) # Compact print format + model.train() + + +def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses, output_dir): + fig, ax1 = plt.subplots() + + # Plot training and validation loss against epochs + ax1.plot(epochs_seen, train_losses, label="Training loss") + ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss") + ax1.set_xlabel("Epochs") + ax1.set_ylabel("Loss") + ax1.legend(loc="upper right") + + # Create a second x-axis for tokens seen + ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis + ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks + ax2.set_xlabel("Tokens seen") + + fig.tight_layout() # Adjust layout to make room + plt.savefig(output_dir / "losses.pdf") + + +def text_to_token_ids(text, tokenizer): + encoded = tokenizer.encode(text) + encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension + return encoded_tensor + + +def token_ids_to_text(token_ids, tokenizer): + flat = token_ids.squeeze(0) # remove batch dimension + return tokenizer.decode(flat.tolist()) + +