@ -34,7 +34,7 @@ Alternatively, you can view this and other files on GitHub at [https://github.co
 | 
			
		||||
| Ch 1: Understanding Large Language Models      | No code                                                                                                                         | No code                       |
 | 
			
		||||
| Ch 2: Working with Text Data                   | - [ch02.ipynb](ch02/01_main-chapter-code/ch02.ipynb)<br/>- [dataloader.ipynb](ch02/01_main-chapter-code/dataloader.ipynb) (summary)<br/>- [exercise-solutions.ipynb](ch02/01_main-chapter-code/exercise-solutions.ipynb) | [./ch02](./ch02)              |
 | 
			
		||||
| Ch 3: Coding Attention Mechanisms              | - [ch03.ipynb](ch03/01_main-chapter-code/ch03.ipynb)<br/>- [multihead-attention.ipynb](ch03/01_main-chapter-code/multihead-attention.ipynb) (summary) | [./ch03](./ch03)              |
 | 
			
		||||
| Ch 4: Implementing a GPT Model from Scratch    | coming soon                                                                                                                     | ...                           |
 | 
			
		||||
| Ch 4: Implementing a GPT Model from Scratch    | - [ch04.ipynb](ch04/01_main-chapter-code/ch04.ipynb)<br/>- [gpt.py](ch04/01_main-chapter-code/gpt.py) (summary) | [./ch04](./ch04)           |
 | 
			
		||||
| Ch 5: Pretraining on Unlabeled Data            | Q1 2024                                                                                                                         | ...                           |
 | 
			
		||||
| Ch 6: Finetuning for Text Classification       | Q2 2024                                                                                                                         | ...                           |
 | 
			
		||||
| Ch 7: Finetuning with Human Feedback           | Q2 2024                                                                                                                         | ...                           |
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/chapter-steps.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 29 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/ffn.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 18 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/generate-text.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 29 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/gpt-in-out.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 26 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/gpt.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 25 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/iterative-gen.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 18 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/iterative-generate.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 23 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/layernorm.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 27 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/layernorm2.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 14 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/mental-model-2.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 19 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/mental-model-3.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 21 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/mental-model-final.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 21 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/mental-model.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 25 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/overview-after-ln.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 21 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/shortcut-example.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 15 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/transformer-block.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 28 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								ch04/01_main-chapter-code/figures/use-gpt.webp
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 15 KiB  | 
							
								
								
									
										274
									
								
								ch04/01_main-chapter-code/gpt.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,274 @@
 | 
			
		||||
# This file collects all the relevant code that we covered thus far
 | 
			
		||||
# throughout Chapters 2-4
 | 
			
		||||
# This file can be run as a standalone s
 | 
			
		||||
 | 
			
		||||
import tiktoken
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
from torch.utils.data import Dataset, DataLoader
 | 
			
		||||
 | 
			
		||||
#####################################
 | 
			
		||||
# Chapter 2
 | 
			
		||||
#####################################
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GPTDatasetV1(Dataset):
 | 
			
		||||
    def __init__(self, txt, tokenizer, max_length, stride):
 | 
			
		||||
        self.tokenizer = tokenizer
 | 
			
		||||
        self.input_ids = []
 | 
			
		||||
        self.target_ids = []
 | 
			
		||||
 | 
			
		||||
        # Tokenize the entire text
 | 
			
		||||
        token_ids = tokenizer.encode(txt)
 | 
			
		||||
 | 
			
		||||
        # Use a sliding window to chunk the book into overlapping sequences of max_length
 | 
			
		||||
        for i in range(0, len(token_ids) - max_length, stride):
 | 
			
		||||
            input_chunk = token_ids[i:i + max_length]
 | 
			
		||||
            target_chunk = token_ids[i + 1: i + max_length + 1]
 | 
			
		||||
            self.input_ids.append(torch.tensor(input_chunk))
 | 
			
		||||
            self.target_ids.append(torch.tensor(target_chunk))
 | 
			
		||||
 | 
			
		||||
    def __len__(self):
 | 
			
		||||
        return len(self.input_ids)
 | 
			
		||||
 | 
			
		||||
    def __getitem__(self, idx):
 | 
			
		||||
        return self.input_ids[idx], self.target_ids[idx]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def create_dataloader(txt, batch_size=4, max_length=256, stride=128, shuffle=True):
 | 
			
		||||
    # Initialize the tokenizer
 | 
			
		||||
    tokenizer = tiktoken.get_encoding("gpt2")
 | 
			
		||||
 | 
			
		||||
    # Create dataset
 | 
			
		||||
    dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
 | 
			
		||||
 | 
			
		||||
    # Create dataloader
 | 
			
		||||
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
 | 
			
		||||
 | 
			
		||||
    return dataloader
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#####################################
 | 
			
		||||
# Chapter 3
 | 
			
		||||
#####################################
 | 
			
		||||
class MultiHeadAttention(nn.Module):
 | 
			
		||||
    def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
 | 
			
		||||
 | 
			
		||||
        self.d_out = d_out
 | 
			
		||||
        self.num_heads = num_heads
 | 
			
		||||
        self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim
 | 
			
		||||
 | 
			
		||||
        self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 | 
			
		||||
        self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 | 
			
		||||
        self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 | 
			
		||||
        self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
 | 
			
		||||
        self.dropout = nn.Dropout(dropout)
 | 
			
		||||
        self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1))
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        b, num_tokens, d_in = x.shape
 | 
			
		||||
 | 
			
		||||
        keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
 | 
			
		||||
        queries = self.W_query(x)
 | 
			
		||||
        values = self.W_value(x)
 | 
			
		||||
 | 
			
		||||
        # We implicitly split the matrix by adding a `num_heads` dimension
 | 
			
		||||
        # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
 | 
			
		||||
        keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) 
 | 
			
		||||
        values = values.view(b, num_tokens, self.num_heads, self.head_dim)
 | 
			
		||||
        queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
 | 
			
		||||
 | 
			
		||||
        # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
 | 
			
		||||
        keys = keys.transpose(1, 2)
 | 
			
		||||
        queries = queries.transpose(1, 2)
 | 
			
		||||
        values = values.transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        # Compute scaled dot-product attention (aka self-attention) with a causal mask
 | 
			
		||||
        attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head
 | 
			
		||||
        # Original mask truncated to the number of tokens and converted to boolean
 | 
			
		||||
        mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
 | 
			
		||||
        # Unsqueeze the mask twice to match dimensions
 | 
			
		||||
        mask_unsqueezed = mask_bool.unsqueeze(0).unsqueeze(0)
 | 
			
		||||
        # Use the unsqueezed mask to fill attention scores
 | 
			
		||||
        attn_scores.masked_fill_(mask_unsqueezed, -torch.inf)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
 | 
			
		||||
        attn_weights = self.dropout(attn_weights)
 | 
			
		||||
 | 
			
		||||
        # Shape: (b, num_tokens, num_heads, head_dim)
 | 
			
		||||
        context_vec = (attn_weights @ values).transpose(1, 2) 
 | 
			
		||||
 | 
			
		||||
        # Combine heads, where self.d_out = self.num_heads * self.head_dim
 | 
			
		||||
        context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
 | 
			
		||||
        context_vec = self.out_proj(context_vec)  # optional projection
 | 
			
		||||
 | 
			
		||||
        return context_vec
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#####################################
 | 
			
		||||
# Chapter 4
 | 
			
		||||
#####################################
 | 
			
		||||
class LayerNorm(nn.Module):
 | 
			
		||||
    def __init__(self, emb_dim):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.eps = 1e-5
 | 
			
		||||
        self.scale = nn.Parameter(torch.ones(emb_dim))
 | 
			
		||||
        self.shift = nn.Parameter(torch.zeros(emb_dim))
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        mean = x.mean(dim=-1, keepdim=True)
 | 
			
		||||
        var = x.var(dim=-1, keepdim=True, unbiased=False)
 | 
			
		||||
        norm_x = (x - mean) / torch.sqrt(var + self.eps)
 | 
			
		||||
        return self.scale * norm_x + self.shift
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GELU(nn.Module):
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        return 0.5 * x * (1 + torch.tanh(
 | 
			
		||||
            torch.sqrt(torch.tensor(2.0 / torch.pi)) * 
 | 
			
		||||
            (x + 0.044715 * torch.pow(x, 3))
 | 
			
		||||
        ))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FeedForward(nn.Module):
 | 
			
		||||
    def __init__(self, cfg):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.layers = nn.Sequential(
 | 
			
		||||
            nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
 | 
			
		||||
            GELU(),
 | 
			
		||||
            nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
 | 
			
		||||
            nn.Dropout(cfg["drop_rate"])
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        return self.layers(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TransformerBlock(nn.Module):
 | 
			
		||||
    def __init__(self, cfg):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.att = MultiHeadAttention(
 | 
			
		||||
            d_in=cfg["emb_dim"],
 | 
			
		||||
            d_out=cfg["emb_dim"],
 | 
			
		||||
            block_size=cfg["ctx_len"],
 | 
			
		||||
            num_heads=cfg["n_heads"], 
 | 
			
		||||
            dropout=cfg["drop_rate"],
 | 
			
		||||
            qkv_bias=cfg["qkv_bias"])
 | 
			
		||||
        self.ff = FeedForward(cfg)
 | 
			
		||||
        self.norm1 = LayerNorm(cfg["emb_dim"])
 | 
			
		||||
        self.norm2 = LayerNorm(cfg["emb_dim"])
 | 
			
		||||
        self.drop_resid = nn.Dropout(cfg["drop_rate"])
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        # Shortcut connection for attention block
 | 
			
		||||
        shortcut = x
 | 
			
		||||
        x = self.norm1(x)
 | 
			
		||||
        x = self.att(x)
 | 
			
		||||
        x = self.drop_resid(x)
 | 
			
		||||
        x = x + shortcut  # Add the original input back
 | 
			
		||||
 | 
			
		||||
        # Shortcut connection for feed-forward block
 | 
			
		||||
        shortcut = x
 | 
			
		||||
        x = self.norm2(x)
 | 
			
		||||
        x = self.ff(x)
 | 
			
		||||
        x = self.drop_resid(x)
 | 
			
		||||
        x = x + shortcut  # Add the original input back
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GPTModel(nn.Module):
 | 
			
		||||
    def __init__(self, cfg):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
 | 
			
		||||
        self.pos_emb = nn.Embedding(cfg["ctx_len"], cfg["emb_dim"])
 | 
			
		||||
 | 
			
		||||
        # Use a placeholder for TransformerBlock
 | 
			
		||||
        self.trf_blocks = nn.Sequential(
 | 
			
		||||
            *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
 | 
			
		||||
 | 
			
		||||
        # Use a placeholder for LayerNorm
 | 
			
		||||
        self.final_norm = LayerNorm(cfg["emb_dim"])
 | 
			
		||||
        self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
 | 
			
		||||
 | 
			
		||||
    def forward(self, in_idx):
 | 
			
		||||
        batch_size, seq_len = in_idx.shape
 | 
			
		||||
        tok_embeds = self.tok_emb(in_idx)
 | 
			
		||||
        pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
 | 
			
		||||
        x = tok_embeds + pos_embeds
 | 
			
		||||
        x = self.trf_blocks(x)
 | 
			
		||||
        x = self.final_norm(x)
 | 
			
		||||
        logits = self.out_head(x)
 | 
			
		||||
        return logits
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def generate_text_simple(model, idx, max_new_tokens, context_size):
 | 
			
		||||
    # idx is (B, T) array of indices in the current context
 | 
			
		||||
    for _ in range(max_new_tokens):
 | 
			
		||||
 | 
			
		||||
        # Crop current context if it exceeds the supported context size
 | 
			
		||||
        # E.g., if LLM supports only 5 tokens, and the context size is 10
 | 
			
		||||
        # then only the last 5 tokens are used as context
 | 
			
		||||
        idx_cond = idx[:, -context_size:]
 | 
			
		||||
 | 
			
		||||
        # Get the predictions
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            logits = model(idx_cond)
 | 
			
		||||
 | 
			
		||||
        # Focus only on the last time step
 | 
			
		||||
        # (batch, n_token, vocab_size) becomes (batch, vocab_size)
 | 
			
		||||
        logits = logits[:, -1, :]  
 | 
			
		||||
 | 
			
		||||
        # Get the idx of the vocab entry with the highest logits value
 | 
			
		||||
        idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1)
 | 
			
		||||
 | 
			
		||||
        # Append sampled index to the running sequence
 | 
			
		||||
        idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1)
 | 
			
		||||
 | 
			
		||||
    return idx
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
 | 
			
		||||
    GPT_CONFIG_124M = {
 | 
			
		||||
        "vocab_size": 50257,  # Vocabulary size
 | 
			
		||||
        "ctx_len": 1024,      # Context length
 | 
			
		||||
        "emb_dim": 768,       # Embedding dimension
 | 
			
		||||
        "n_heads": 12,        # Number of attention heads
 | 
			
		||||
        "n_layers": 12,       # Number of layers
 | 
			
		||||
        "drop_rate": 0.1,     # Dropout rate
 | 
			
		||||
        "qkv_bias": False     # Query-Key-Value bias
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    torch.manual_seed(123)
 | 
			
		||||
    model = GPTModel(GPT_CONFIG_124M)
 | 
			
		||||
    model.eval()  # disable dropout
 | 
			
		||||
 | 
			
		||||
    start_context = "Hello, I am"
 | 
			
		||||
 | 
			
		||||
    tokenizer = tiktoken.get_encoding("gpt2")
 | 
			
		||||
    encoded = tokenizer.encode(start_context)
 | 
			
		||||
    encoded_tensor = torch.tensor(encoded).unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}")
 | 
			
		||||
    print("\nInput text:", start_context)
 | 
			
		||||
    print("Encoded input text:", encoded)
 | 
			
		||||
    print("encoded_tensor.shape:", encoded_tensor.shape)
 | 
			
		||||
 | 
			
		||||
    out = generate_text_simple(
 | 
			
		||||
        model=model,
 | 
			
		||||
        idx=encoded_tensor,
 | 
			
		||||
        max_new_tokens=10,
 | 
			
		||||
        context_size=GPT_CONFIG_124M["ctx_len"]
 | 
			
		||||
    )
 | 
			
		||||
    decoded_text = tokenizer.decode(out.squeeze(0).tolist())
 | 
			
		||||
 | 
			
		||||
    print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}")
 | 
			
		||||
    print("\nOutput:", out)
 | 
			
		||||
    print("Output length:", len(out[0]))
 | 
			
		||||
    print("Output text:", decoded_text)
 | 
			
		||||