Chapter 6 ablation studies (#127)

* Chapter 6 ablation studies

* add table

* formatting

* formatting

* formatting
This commit is contained in:
Sebastian Raschka 2024-04-23 09:51:52 -05:00 committed by GitHub
parent 44a009f7e6
commit f656ef996d
5 changed files with 848 additions and 0 deletions

View File

@ -0,0 +1 @@
In progress.

View File

@ -0,0 +1,10 @@
# Additional Experiments
| Model | Trainable token | Trainable layers | CPU/GPU | Training time | Training acc | Validation acc | Test acc |
|--------------------|-----------------|------------------|---------|---------------|--------------|----------------|----------|
| gpt2-small (124M) | last | last_block | V100 | 0.39 min | 96.63% | 97.99% | 94.33% |
| gpt2-small (124M) | first | last_block | V100 | 0.37 min | 78.46% | 80.54% | 75.00% |
| gpt2-small (124M) | last | last_layer | V100 | 0.33 min | 78.65% | 87.25% | 78.33% |
| gpt2-small (124M) | last | all | V100 | 0.94 min | 99.62% | 96.64% | 96.33% |
| gpt2-medium (355M) | last | last_block | V100 | 0.91 min | 87.50% | 51.01% | 56.67% |
| gpt2-large (774M) | last | last_block | V100 | 1.91 min | 99.52% | 98.66% | 96.67% |

View File

@ -0,0 +1,393 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import argparse
import os
from pathlib import Path
import time
import urllib.request
import zipfile
import pandas as pd
import tiktoken
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from gpt_download import download_and_load_gpt2
from previous_chapters import GPTModel, load_weights_into_gpt
class SpamDataset(Dataset):
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
self.data = pd.read_csv(csv_file)
self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
# Pre-tokenize texts
self.encoded_texts = [
tokenizer.encode(text)[:self.max_length]
for text in self.data["Text"]
]
# Pad sequences to the longest sequence
self.encoded_texts = [
et + [pad_token_id] * (self.max_length - len(et))
for et in self.encoded_texts
]
def __getitem__(self, index):
encoded = self.encoded_texts[index]
label = self.data.iloc[index]["Label"]
return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
def __len__(self):
return len(self.data)
def _longest_encoded_length(self, tokenizer):
max_length = 0
for text in self.data["Text"]:
encoded_length = len(tokenizer.encode(text))
if encoded_length > max_length:
max_length = encoded_length
return max_length
def download_and_unzip(url, zip_path, extract_to, new_file_path):
if new_file_path.exists():
print(f"{new_file_path} already exists. Skipping download and extraction.")
return
# Downloading the file
with urllib.request.urlopen(url) as response:
with open(zip_path, "wb") as out_file:
out_file.write(response.read())
# Unzipping the file
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
# Renaming the file to indicate its format
original_file = Path(extract_to) / "SMSSpamCollection"
os.rename(original_file, new_file_path)
print(f"File downloaded and saved as {new_file_path}")
def random_split(df, train_frac, validation_frac):
# Shuffle the entire DataFrame
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
# Calculate split indices
train_end = int(len(df) * train_frac)
validation_end = train_end + int(len(df) * validation_frac)
# Split the DataFrame
train_df = df[:train_end]
validation_df = df[train_end:validation_end]
test_df = df[validation_end:]
return train_df, validation_df, test_df
def create_dataset_csvs(data_file_path):
df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"])
# Create balanced dataset
n_spam = df[df["Label"] == "spam"].shape[0]
ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123)
balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]])
balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True)
balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
# Sample and save csv files
train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
train_df.to_csv("train.csv", index=None)
validation_df.to_csv("validation.csv", index=None)
test_df.to_csv("test.csv", index=None)
def instantiate_model(choose_model):
BASE_CONFIG = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"drop_rate": 0.0, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
model_configs = {
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
}
BASE_CONFIG.update(model_configs[choose_model])
model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")")
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
model = GPTModel(BASE_CONFIG)
load_weights_into_gpt(model, params)
model.eval()
return model
def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1):
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
logits = model(input_batch)[:, trainable_token, :] # Logits of last ouput token
loss = torch.nn.functional.cross_entropy(logits, target_batch)
return loss
def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
total_loss = 0.
if len(data_loader) == 0:
return float("nan")
elif num_batches is None:
num_batches = len(data_loader)
else:
# Reduce the number of batches to match the total number of batches in the data loader
# if num_batches exceeds the number of batches in the data loader
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
total_loss += loss.item()
else:
break
return total_loss / num_batches
@torch.no_grad() # Disable gradient tracking for efficiency
def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
model.eval()
correct_predictions, num_examples = 0, 0
if num_batches is None:
num_batches = len(data_loader)
else:
num_batches = min(num_batches, len(data_loader))
for i, (input_batch, target_batch) in enumerate(data_loader):
if i < num_batches:
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
logits = model(input_batch)[:, trainable_token, :] # Logits of last ouput token
predicted_labels = torch.argmax(logits, dim=-1)
num_examples += predicted_labels.shape[0]
correct_predictions += (predicted_labels == target_batch).sum().item()
else:
break
return correct_predictions / num_examples
def evaluate_model(model, train_loader, val_loader, device, eval_iter, trainable_token=-1):
model.eval()
with torch.no_grad():
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
model.train()
return train_loss, val_loss
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
eval_freq, eval_iter, tokenizer, max_steps=None, trainable_token=-1):
# Initialize lists to track losses and tokens seen
train_losses, val_losses, train_accs, val_accs = [], [], [], []
examples_seen, global_step = 0, -1
# Main training loop
for epoch in range(num_epochs):
model.train() # Set model to training mode
for input_batch, target_batch in train_loader:
optimizer.zero_grad() # Reset loss gradients from previous epoch
loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
loss.backward() # Calculate loss gradients
optimizer.step() # Update model weights using loss gradients
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
global_step += 1
# Optional evaluation step
if global_step % eval_freq == 0:
train_loss, val_loss = evaluate_model(
model, train_loader, val_loader, device, eval_iter, trainable_token=trainable_token)
train_losses.append(train_loss)
val_losses.append(val_loss)
print(f"Ep {epoch+1} (Step {global_step:06d}): "
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
if max_steps is not None and global_step > max_steps:
break
# New: Calculate accuracy after each epoch
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
train_accs.append(train_accuracy)
val_accs.append(val_accuracy)
if max_steps is not None and global_step > max_steps:
break
return train_losses, val_losses, train_accs, val_accs, examples_seen
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_size",
type=str,
default="gpt2-small (124M)",
help=(
"Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)',"
" 'gpt2-large (774M)', 'gpt2-xl (1558M)'."
)
)
parser.add_argument(
"--trainable_layers",
type=str,
default="last_block",
help=(
"Which layers to train. Options: 'all', 'last_block', 'last_layer'."
)
)
parser.add_argument(
"--trainable_token",
type=str,
default="last",
help=(
"Which token to train. Options: 'first', 'last'."
)
)
args = parser.parse_args()
if args.trainable_token == "first":
args.trainable_token = 0
elif args.trainable_token == "last":
args.trainable_token = -1
else:
raise ValueError("Invalid --trainable_token argument")
###############################
# Instantiate dataloaders
###############################
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
zip_path = "sms_spam_collection.zip"
extract_to = "sms_spam_collection"
new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
base_path = Path(".")
file_names = ["train.csv", "validation.csv", "test.csv"]
all_exist = all((base_path / file_name).exists() for file_name in file_names)
if not all_exist:
download_and_unzip(url, zip_path, extract_to, new_file_path)
create_dataset_csvs(new_file_path)
tokenizer = tiktoken.get_encoding("gpt2")
train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer)
val_dataset = SpamDataset(base_path / "validation.csv", max_length=None, tokenizer=tokenizer)
test_dataset = SpamDataset(base_path / "test.csv", max_length=None, tokenizer=tokenizer)
tokenizer = tiktoken.get_encoding("gpt2")
num_workers = 0
batch_size = 8
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True,
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=False,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
num_workers=num_workers,
drop_last=False,
)
###############################
# Load model
###############################
model = instantiate_model(args.model_size)
for param in model.parameters():
param.requires_grad = False
if args.model_size == "gpt2-small (124M)":
in_features = 768
elif args.model_size == "gpt2-medium (355M)":
in_features = 1024
elif args.model_size == "gpt2-large (774M)":
in_features = 1280
elif args.model_size == "gpt2-xl (1558M)":
in_features = 1280
else:
raise ValueError("Invalid --model_size argument")
torch.manual_seed(123)
print(model.out_head.weight.shape)
model.out_head = torch.nn.Linear(in_features=in_features, out_features=2)
if args.trainable_layers == "last_layer":
pass
elif args.trainable_layers == "last_block":
for param in model.trf_blocks[-1].parameters():
param.requires_grad = True
for param in model.final_norm.parameters():
param.requires_grad = True
elif args.trainable_layers == "all":
for param in model.parameters():
param.requires_grad = True
else:
raise ValueError("Invalid --trainable_layers argument.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
###############################
# Train model
###############################
start_time = time.time()
torch.manual_seed(123)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
num_epochs = 5
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
model, train_loader, val_loader, optimizer, device,
num_epochs=num_epochs, eval_freq=50, eval_iter=5,
tokenizer=tokenizer, max_steps=None, trainable_token=args.trainable_token
)
end_time = time.time()
execution_time_minutes = (end_time - start_time) / 60
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
###############################
# Evaluate model
###############################
train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token=args.trainable_token)
val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token=args.trainable_token)
test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token=args.trainable_token)
print(f"Training accuracy: {train_accuracy*100:.2f}%")
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
print(f"Test accuracy: {test_accuracy*100:.2f}%")

View File

@ -0,0 +1,99 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
import os
import requests
import json
import numpy as np
import tensorflow as tf
from tqdm import tqdm
def download_and_load_gpt2(model_size, models_dir):
# Validate model size
allowed_sizes = ("124M", "355M", "774M", "1558M")
if model_size not in allowed_sizes:
raise ValueError(f"Model size not in {allowed_sizes}")
# Define paths
model_dir = os.path.join(models_dir, model_size)
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
filenames = [
"checkpoint", "encoder.json", "hparams.json",
"model.ckpt.data-00000-of-00001", "model.ckpt.index",
"model.ckpt.meta", "vocab.bpe"
]
# Download files
os.makedirs(model_dir, exist_ok=True)
for filename in filenames:
file_url = os.path.join(base_url, model_size, filename)
file_path = os.path.join(model_dir, filename)
download_file(file_url, file_path)
# Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
return settings, params
def download_file(url, destination):
# Send a GET request to download the file in streaming mode
response = requests.get(url, stream=True)
# Get the total file size from headers, defaulting to 0 if not present
file_size = int(response.headers.get("content-length", 0))
# Check if file exists and has the same size
if os.path.exists(destination):
file_size_local = os.path.getsize(destination)
if file_size == file_size_local:
print(f"File already exists and is up-to-date: {destination}")
return
# Define the block size for reading the file
block_size = 1024 # 1 Kilobyte
# Initialize the progress bar with total file size
progress_bar_description = url.split("/")[-1] # Extract filename from URL
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
# Open the destination file in binary write mode
with open(destination, "wb") as file:
# Iterate over the file data in chunks
for chunk in response.iter_content(block_size):
progress_bar.update(len(chunk)) # Update progress bar
file.write(chunk) # Write the chunk to the file
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
# Initialize parameters dictionary with empty blocks for each layer
params = {"blocks": [{} for _ in range(settings["n_layer"])]}
# Iterate over each variable in the checkpoint
for name, _ in tf.train.list_variables(ckpt_path):
# Load the variable and remove singleton dimensions
variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
# Process the variable name to extract relevant parts
variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix
# Identify the target dictionary for the variable
target_dict = params
if variable_name_parts[0].startswith("h"):
layer_number = int(variable_name_parts[0][1:])
target_dict = params["blocks"][layer_number]
# Recursively access or create nested dictionaries
for key in variable_name_parts[1:-1]:
target_dict = target_dict.setdefault(key, {})
# Assign the variable array to the last key
last_key = variable_name_parts[-1]
target_dict[last_key] = variable_array
return params

View File

@ -0,0 +1,345 @@
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
#
# This file collects all the relevant code that we covered thus far
# throughout Chapters 2-5.
# This file can be run as a standalone script.
import numpy as np
import tiktoken
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
#####################################
# Chapter 2
#####################################
class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []
# Tokenize the entire text
token_ids = tokenizer.encode(txt)
# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):
input_chunk = token_ids[i:i + max_length]
target_chunk = token_ids[i + 1: i + max_length + 1]
self.input_ids.append(torch.tensor(input_chunk))
self.target_ids.append(torch.tensor(target_chunk))
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
return self.input_ids[idx], self.target_ids[idx]
def create_dataloader_v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True):
# Initialize the tokenizer
tokenizer = tiktoken.get_encoding("gpt2")
# Create dataset
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
# Create dataloader
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
return dataloader
#####################################
# Chapter 3
#####################################
class MultiHeadAttention(nn.Module):
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
self.dropout = nn.Dropout(dropout)
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
def forward(self, x):
b, num_tokens, d_in = x.shape
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
queries = self.W_query(x)
values = self.W_value(x)
# We implicitly split the matrix by adding a `num_heads` dimension
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
keys = keys.transpose(1, 2)
queries = queries.transpose(1, 2)
values = values.transpose(1, 2)
# Compute scaled dot-product attention (aka self-attention) with a causal mask
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
# Original mask truncated to the number of tokens and converted to boolean
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
# Use the mask to fill attention scores
attn_scores.masked_fill_(mask_bool, -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
attn_weights = self.dropout(attn_weights)
# Shape: (b, num_tokens, num_heads, head_dim)
context_vec = (attn_weights @ values).transpose(1, 2)
# Combine heads, where self.d_out = self.num_heads * self.head_dim
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
context_vec = self.out_proj(context_vec) # optional projection
return context_vec
#####################################
# Chapter 4
#####################################
class LayerNorm(nn.Module):
def __init__(self, emb_dim):
super().__init__()
self.eps = 1e-5
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim))
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True, unbiased=False)
norm_x = (x - mean) / torch.sqrt(var + self.eps)
return self.scale * norm_x + self.shift
class GELU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return 0.5 * x * (1 + torch.tanh(
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
(x + 0.044715 * torch.pow(x, 3))
))
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
GELU(),
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
)
def forward(self, x):
return self.layers(x)
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = MultiHeadAttention(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
context_length=cfg["context_length"],
num_heads=cfg["n_heads"],
dropout=cfg["drop_rate"],
qkv_bias=cfg["qkv_bias"])
self.ff = FeedForward(cfg)
self.norm1 = LayerNorm(cfg["emb_dim"])
self.norm2 = LayerNorm(cfg["emb_dim"])
self.drop_resid = nn.Dropout(cfg["drop_rate"])
def forward(self, x):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
x = self.drop_resid(x)
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = self.drop_resid(x)
x = x + shortcut # Add the original input back
return x
class GPTModel(nn.Module):
def __init__(self, cfg):
super().__init__()
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
self.drop_emb = nn.Dropout(cfg["drop_rate"])
self.trf_blocks = nn.Sequential(
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
self.final_norm = LayerNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
def forward(self, in_idx):
batch_size, seq_len = in_idx.shape
tok_embeds = self.tok_emb(in_idx)
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
x = self.drop_emb(x)
x = self.trf_blocks(x)
x = self.final_norm(x)
logits = self.out_head(x)
return logits
def generate_text_simple(model, idx, max_new_tokens, context_size):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# Crop current context if it exceeds the supported context size
# E.g., if LLM supports only 5 tokens, and the context size is 10
# then only the last 5 tokens are used as context
idx_cond = idx[:, -context_size:]
# Get the predictions
with torch.no_grad():
logits = model(idx_cond)
# Focus only on the last time step
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
logits = logits[:, -1, :]
# Get the idx of the vocab entry with the highest logits value
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
# Append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
return idx
#####################################
# Chapter 5
#####################################
def assign(left, right):
if left.shape != right.shape:
raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
return torch.nn.Parameter(torch.tensor(right))
def load_weights_into_gpt(gpt, params):
gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
for b in range(len(params["blocks"])):
q_w, k_w, v_w = np.split(
(params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
gpt.trf_blocks[b].att.W_query.weight = assign(
gpt.trf_blocks[b].att.W_query.weight, q_w.T)
gpt.trf_blocks[b].att.W_key.weight = assign(
gpt.trf_blocks[b].att.W_key.weight, k_w.T)
gpt.trf_blocks[b].att.W_value.weight = assign(
gpt.trf_blocks[b].att.W_value.weight, v_w.T)
q_b, k_b, v_b = np.split(
(params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
gpt.trf_blocks[b].att.W_query.bias = assign(
gpt.trf_blocks[b].att.W_query.bias, q_b)
gpt.trf_blocks[b].att.W_key.bias = assign(
gpt.trf_blocks[b].att.W_key.bias, k_b)
gpt.trf_blocks[b].att.W_value.bias = assign(
gpt.trf_blocks[b].att.W_value.bias, v_b)
gpt.trf_blocks[b].att.out_proj.weight = assign(
gpt.trf_blocks[b].att.out_proj.weight,
params["blocks"][b]["attn"]["c_proj"]["w"].T)
gpt.trf_blocks[b].att.out_proj.bias = assign(
gpt.trf_blocks[b].att.out_proj.bias,
params["blocks"][b]["attn"]["c_proj"]["b"])
gpt.trf_blocks[b].ff.layers[0].weight = assign(
gpt.trf_blocks[b].ff.layers[0].weight,
params["blocks"][b]["mlp"]["c_fc"]["w"].T)
gpt.trf_blocks[b].ff.layers[0].bias = assign(
gpt.trf_blocks[b].ff.layers[0].bias,
params["blocks"][b]["mlp"]["c_fc"]["b"])
gpt.trf_blocks[b].ff.layers[2].weight = assign(
gpt.trf_blocks[b].ff.layers[2].weight,
params["blocks"][b]["mlp"]["c_proj"]["w"].T)
gpt.trf_blocks[b].ff.layers[2].bias = assign(
gpt.trf_blocks[b].ff.layers[2].bias,
params["blocks"][b]["mlp"]["c_proj"]["b"])
gpt.trf_blocks[b].norm1.scale = assign(
gpt.trf_blocks[b].norm1.scale,
params["blocks"][b]["ln_1"]["g"])
gpt.trf_blocks[b].norm1.shift = assign(
gpt.trf_blocks[b].norm1.shift,
params["blocks"][b]["ln_1"]["b"])
gpt.trf_blocks[b].norm2.scale = assign(
gpt.trf_blocks[b].norm2.scale,
params["blocks"][b]["ln_2"]["g"])
gpt.trf_blocks[b].norm2.shift = assign(
gpt.trf_blocks[b].norm2.shift,
params["blocks"][b]["ln_2"]["b"])
gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None):
# For-loop is the same as before: Get logits, and only focus on last time step
for _ in range(max_new_tokens):
idx_cond = idx[:, -context_size:]
with torch.no_grad():
logits = model(idx_cond)
logits = logits[:, -1, :]
# New: Filter logits with top_k sampling
if top_k is not None:
# Keep only top_k values
top_logits, _ = torch.topk(logits, top_k)
min_val = top_logits[:, -1]
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
# New: Apply temperature scaling
if temperature > 0.0:
logits = logits / temperature
# Apply softmax to get probabilities
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
# Sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
# Otherwise same as before: get idx of the vocab entry with the highest logits value
else:
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
# Same as before: append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
return idx