mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-31 12:00:23 +00:00
Chapter 6 ablation studies (#127)
* Chapter 6 ablation studies * add table * formatting * formatting * formatting
This commit is contained in:
parent
44a009f7e6
commit
f656ef996d
1
ch06/01_main-chapter-code/README.md
Normal file
1
ch06/01_main-chapter-code/README.md
Normal file
@ -0,0 +1 @@
|
||||
In progress.
|
10
ch06/02_additional-experiments/README.md
Normal file
10
ch06/02_additional-experiments/README.md
Normal file
@ -0,0 +1,10 @@
|
||||
# Additional Experiments
|
||||
|
||||
| Model | Trainable token | Trainable layers | CPU/GPU | Training time | Training acc | Validation acc | Test acc |
|
||||
|--------------------|-----------------|------------------|---------|---------------|--------------|----------------|----------|
|
||||
| gpt2-small (124M) | last | last_block | V100 | 0.39 min | 96.63% | 97.99% | 94.33% |
|
||||
| gpt2-small (124M) | first | last_block | V100 | 0.37 min | 78.46% | 80.54% | 75.00% |
|
||||
| gpt2-small (124M) | last | last_layer | V100 | 0.33 min | 78.65% | 87.25% | 78.33% |
|
||||
| gpt2-small (124M) | last | all | V100 | 0.94 min | 99.62% | 96.64% | 96.33% |
|
||||
| gpt2-medium (355M) | last | last_block | V100 | 0.91 min | 87.50% | 51.01% | 56.67% |
|
||||
| gpt2-large (774M) | last | last_block | V100 | 1.91 min | 99.52% | 98.66% | 96.67% |
|
393
ch06/02_additional-experiments/additional-experiments.py
Normal file
393
ch06/02_additional-experiments/additional-experiments.py
Normal file
@ -0,0 +1,393 @@
|
||||
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||||
# Source for "Build a Large Language Model From Scratch"
|
||||
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||||
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from pathlib import Path
|
||||
import time
|
||||
import urllib.request
|
||||
import zipfile
|
||||
|
||||
import pandas as pd
|
||||
import tiktoken
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from gpt_download import download_and_load_gpt2
|
||||
from previous_chapters import GPTModel, load_weights_into_gpt
|
||||
|
||||
|
||||
class SpamDataset(Dataset):
|
||||
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
|
||||
self.data = pd.read_csv(csv_file)
|
||||
self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
|
||||
|
||||
# Pre-tokenize texts
|
||||
self.encoded_texts = [
|
||||
tokenizer.encode(text)[:self.max_length]
|
||||
for text in self.data["Text"]
|
||||
]
|
||||
# Pad sequences to the longest sequence
|
||||
self.encoded_texts = [
|
||||
et + [pad_token_id] * (self.max_length - len(et))
|
||||
for et in self.encoded_texts
|
||||
]
|
||||
|
||||
def __getitem__(self, index):
|
||||
encoded = self.encoded_texts[index]
|
||||
label = self.data.iloc[index]["Label"]
|
||||
return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def _longest_encoded_length(self, tokenizer):
|
||||
max_length = 0
|
||||
for text in self.data["Text"]:
|
||||
encoded_length = len(tokenizer.encode(text))
|
||||
if encoded_length > max_length:
|
||||
max_length = encoded_length
|
||||
return max_length
|
||||
|
||||
|
||||
def download_and_unzip(url, zip_path, extract_to, new_file_path):
|
||||
if new_file_path.exists():
|
||||
print(f"{new_file_path} already exists. Skipping download and extraction.")
|
||||
return
|
||||
|
||||
# Downloading the file
|
||||
with urllib.request.urlopen(url) as response:
|
||||
with open(zip_path, "wb") as out_file:
|
||||
out_file.write(response.read())
|
||||
|
||||
# Unzipping the file
|
||||
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
||||
zip_ref.extractall(extract_to)
|
||||
|
||||
# Renaming the file to indicate its format
|
||||
original_file = Path(extract_to) / "SMSSpamCollection"
|
||||
os.rename(original_file, new_file_path)
|
||||
print(f"File downloaded and saved as {new_file_path}")
|
||||
|
||||
|
||||
def random_split(df, train_frac, validation_frac):
|
||||
# Shuffle the entire DataFrame
|
||||
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
|
||||
|
||||
# Calculate split indices
|
||||
train_end = int(len(df) * train_frac)
|
||||
validation_end = train_end + int(len(df) * validation_frac)
|
||||
|
||||
# Split the DataFrame
|
||||
train_df = df[:train_end]
|
||||
validation_df = df[train_end:validation_end]
|
||||
test_df = df[validation_end:]
|
||||
|
||||
return train_df, validation_df, test_df
|
||||
|
||||
|
||||
def create_dataset_csvs(data_file_path):
|
||||
df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"])
|
||||
|
||||
# Create balanced dataset
|
||||
n_spam = df[df["Label"] == "spam"].shape[0]
|
||||
ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123)
|
||||
balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]])
|
||||
balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True)
|
||||
balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
|
||||
|
||||
# Sample and save csv files
|
||||
train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
|
||||
train_df.to_csv("train.csv", index=None)
|
||||
validation_df.to_csv("validation.csv", index=None)
|
||||
test_df.to_csv("test.csv", index=None)
|
||||
|
||||
|
||||
def instantiate_model(choose_model):
|
||||
|
||||
BASE_CONFIG = {
|
||||
"vocab_size": 50257, # Vocabulary size
|
||||
"context_length": 1024, # Context length
|
||||
"drop_rate": 0.0, # Dropout rate
|
||||
"qkv_bias": True # Query-key-value bias
|
||||
}
|
||||
|
||||
model_configs = {
|
||||
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
||||
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
||||
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
||||
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
||||
}
|
||||
|
||||
BASE_CONFIG.update(model_configs[choose_model])
|
||||
|
||||
model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")")
|
||||
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
||||
|
||||
model = GPTModel(BASE_CONFIG)
|
||||
load_weights_into_gpt(model, params)
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1):
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last ouput token
|
||||
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
||||
return loss
|
||||
|
||||
|
||||
def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
|
||||
total_loss = 0.
|
||||
if len(data_loader) == 0:
|
||||
return float("nan")
|
||||
elif num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
# Reduce the number of batches to match the total number of batches in the data loader
|
||||
# if num_batches exceeds the number of batches in the data loader
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
|
||||
total_loss += loss.item()
|
||||
else:
|
||||
break
|
||||
return total_loss / num_batches
|
||||
|
||||
|
||||
@torch.no_grad() # Disable gradient tracking for efficiency
|
||||
def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
|
||||
model.eval()
|
||||
correct_predictions, num_examples = 0, 0
|
||||
|
||||
if num_batches is None:
|
||||
num_batches = len(data_loader)
|
||||
else:
|
||||
num_batches = min(num_batches, len(data_loader))
|
||||
for i, (input_batch, target_batch) in enumerate(data_loader):
|
||||
if i < num_batches:
|
||||
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
||||
logits = model(input_batch)[:, trainable_token, :] # Logits of last ouput token
|
||||
predicted_labels = torch.argmax(logits, dim=-1)
|
||||
|
||||
num_examples += predicted_labels.shape[0]
|
||||
correct_predictions += (predicted_labels == target_batch).sum().item()
|
||||
else:
|
||||
break
|
||||
return correct_predictions / num_examples
|
||||
|
||||
|
||||
def evaluate_model(model, train_loader, val_loader, device, eval_iter, trainable_token=-1):
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
|
||||
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
|
||||
model.train()
|
||||
return train_loss, val_loss
|
||||
|
||||
|
||||
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
|
||||
eval_freq, eval_iter, tokenizer, max_steps=None, trainable_token=-1):
|
||||
# Initialize lists to track losses and tokens seen
|
||||
train_losses, val_losses, train_accs, val_accs = [], [], [], []
|
||||
examples_seen, global_step = 0, -1
|
||||
|
||||
# Main training loop
|
||||
for epoch in range(num_epochs):
|
||||
model.train() # Set model to training mode
|
||||
|
||||
for input_batch, target_batch in train_loader:
|
||||
optimizer.zero_grad() # Reset loss gradients from previous epoch
|
||||
loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
|
||||
loss.backward() # Calculate loss gradients
|
||||
optimizer.step() # Update model weights using loss gradients
|
||||
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
|
||||
global_step += 1
|
||||
|
||||
# Optional evaluation step
|
||||
if global_step % eval_freq == 0:
|
||||
train_loss, val_loss = evaluate_model(
|
||||
model, train_loader, val_loader, device, eval_iter, trainable_token=trainable_token)
|
||||
train_losses.append(train_loss)
|
||||
val_losses.append(val_loss)
|
||||
print(f"Ep {epoch+1} (Step {global_step:06d}): "
|
||||
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
|
||||
|
||||
if max_steps is not None and global_step > max_steps:
|
||||
break
|
||||
|
||||
# New: Calculate accuracy after each epoch
|
||||
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
|
||||
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
|
||||
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
|
||||
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
||||
train_accs.append(train_accuracy)
|
||||
val_accs.append(val_accuracy)
|
||||
|
||||
if max_steps is not None and global_step > max_steps:
|
||||
break
|
||||
|
||||
return train_losses, val_losses, train_accs, val_accs, examples_seen
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_size",
|
||||
type=str,
|
||||
default="gpt2-small (124M)",
|
||||
help=(
|
||||
"Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)',"
|
||||
" 'gpt2-large (774M)', 'gpt2-xl (1558M)'."
|
||||
)
|
||||
)
|
||||
parser.add_argument(
|
||||
"--trainable_layers",
|
||||
type=str,
|
||||
default="last_block",
|
||||
help=(
|
||||
"Which layers to train. Options: 'all', 'last_block', 'last_layer'."
|
||||
)
|
||||
)
|
||||
parser.add_argument(
|
||||
"--trainable_token",
|
||||
type=str,
|
||||
default="last",
|
||||
help=(
|
||||
"Which token to train. Options: 'first', 'last'."
|
||||
)
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.trainable_token == "first":
|
||||
args.trainable_token = 0
|
||||
elif args.trainable_token == "last":
|
||||
args.trainable_token = -1
|
||||
else:
|
||||
raise ValueError("Invalid --trainable_token argument")
|
||||
|
||||
###############################
|
||||
# Instantiate dataloaders
|
||||
###############################
|
||||
|
||||
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
|
||||
zip_path = "sms_spam_collection.zip"
|
||||
extract_to = "sms_spam_collection"
|
||||
new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
|
||||
|
||||
base_path = Path(".")
|
||||
file_names = ["train.csv", "validation.csv", "test.csv"]
|
||||
all_exist = all((base_path / file_name).exists() for file_name in file_names)
|
||||
|
||||
if not all_exist:
|
||||
download_and_unzip(url, zip_path, extract_to, new_file_path)
|
||||
create_dataset_csvs(new_file_path)
|
||||
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
|
||||
train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer)
|
||||
val_dataset = SpamDataset(base_path / "validation.csv", max_length=None, tokenizer=tokenizer)
|
||||
test_dataset = SpamDataset(base_path / "test.csv", max_length=None, tokenizer=tokenizer)
|
||||
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
|
||||
num_workers = 0
|
||||
batch_size = 8
|
||||
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=num_workers,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
val_loader = DataLoader(
|
||||
dataset=val_dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
num_workers=num_workers,
|
||||
drop_last=False,
|
||||
)
|
||||
|
||||
###############################
|
||||
# Load model
|
||||
###############################
|
||||
|
||||
model = instantiate_model(args.model_size)
|
||||
for param in model.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
if args.model_size == "gpt2-small (124M)":
|
||||
in_features = 768
|
||||
elif args.model_size == "gpt2-medium (355M)":
|
||||
in_features = 1024
|
||||
elif args.model_size == "gpt2-large (774M)":
|
||||
in_features = 1280
|
||||
elif args.model_size == "gpt2-xl (1558M)":
|
||||
in_features = 1280
|
||||
else:
|
||||
raise ValueError("Invalid --model_size argument")
|
||||
|
||||
torch.manual_seed(123)
|
||||
print(model.out_head.weight.shape)
|
||||
model.out_head = torch.nn.Linear(in_features=in_features, out_features=2)
|
||||
|
||||
if args.trainable_layers == "last_layer":
|
||||
pass
|
||||
elif args.trainable_layers == "last_block":
|
||||
for param in model.trf_blocks[-1].parameters():
|
||||
param.requires_grad = True
|
||||
for param in model.final_norm.parameters():
|
||||
param.requires_grad = True
|
||||
elif args.trainable_layers == "all":
|
||||
for param in model.parameters():
|
||||
param.requires_grad = True
|
||||
else:
|
||||
raise ValueError("Invalid --trainable_layers argument.")
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model.to(device)
|
||||
|
||||
###############################
|
||||
# Train model
|
||||
###############################
|
||||
|
||||
start_time = time.time()
|
||||
torch.manual_seed(123)
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
|
||||
|
||||
num_epochs = 5
|
||||
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
|
||||
model, train_loader, val_loader, optimizer, device,
|
||||
num_epochs=num_epochs, eval_freq=50, eval_iter=5,
|
||||
tokenizer=tokenizer, max_steps=None, trainable_token=args.trainable_token
|
||||
)
|
||||
|
||||
end_time = time.time()
|
||||
execution_time_minutes = (end_time - start_time) / 60
|
||||
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
|
||||
|
||||
###############################
|
||||
# Evaluate model
|
||||
###############################
|
||||
|
||||
train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token=args.trainable_token)
|
||||
val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token=args.trainable_token)
|
||||
test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token=args.trainable_token)
|
||||
|
||||
print(f"Training accuracy: {train_accuracy*100:.2f}%")
|
||||
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
||||
print(f"Test accuracy: {test_accuracy*100:.2f}%")
|
99
ch06/02_additional-experiments/gpt_download.py
Normal file
99
ch06/02_additional-experiments/gpt_download.py
Normal file
@ -0,0 +1,99 @@
|
||||
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||||
# Source for "Build a Large Language Model From Scratch"
|
||||
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||||
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||||
|
||||
|
||||
import os
|
||||
import requests
|
||||
import json
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def download_and_load_gpt2(model_size, models_dir):
|
||||
# Validate model size
|
||||
allowed_sizes = ("124M", "355M", "774M", "1558M")
|
||||
if model_size not in allowed_sizes:
|
||||
raise ValueError(f"Model size not in {allowed_sizes}")
|
||||
|
||||
# Define paths
|
||||
model_dir = os.path.join(models_dir, model_size)
|
||||
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
|
||||
filenames = [
|
||||
"checkpoint", "encoder.json", "hparams.json",
|
||||
"model.ckpt.data-00000-of-00001", "model.ckpt.index",
|
||||
"model.ckpt.meta", "vocab.bpe"
|
||||
]
|
||||
|
||||
# Download files
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
for filename in filenames:
|
||||
file_url = os.path.join(base_url, model_size, filename)
|
||||
file_path = os.path.join(model_dir, filename)
|
||||
download_file(file_url, file_path)
|
||||
|
||||
# Load settings and params
|
||||
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
|
||||
settings = json.load(open(os.path.join(model_dir, "hparams.json")))
|
||||
params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
|
||||
|
||||
return settings, params
|
||||
|
||||
|
||||
def download_file(url, destination):
|
||||
# Send a GET request to download the file in streaming mode
|
||||
response = requests.get(url, stream=True)
|
||||
|
||||
# Get the total file size from headers, defaulting to 0 if not present
|
||||
file_size = int(response.headers.get("content-length", 0))
|
||||
|
||||
# Check if file exists and has the same size
|
||||
if os.path.exists(destination):
|
||||
file_size_local = os.path.getsize(destination)
|
||||
if file_size == file_size_local:
|
||||
print(f"File already exists and is up-to-date: {destination}")
|
||||
return
|
||||
|
||||
# Define the block size for reading the file
|
||||
block_size = 1024 # 1 Kilobyte
|
||||
|
||||
# Initialize the progress bar with total file size
|
||||
progress_bar_description = url.split("/")[-1] # Extract filename from URL
|
||||
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
|
||||
# Open the destination file in binary write mode
|
||||
with open(destination, "wb") as file:
|
||||
# Iterate over the file data in chunks
|
||||
for chunk in response.iter_content(block_size):
|
||||
progress_bar.update(len(chunk)) # Update progress bar
|
||||
file.write(chunk) # Write the chunk to the file
|
||||
|
||||
|
||||
def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
|
||||
# Initialize parameters dictionary with empty blocks for each layer
|
||||
params = {"blocks": [{} for _ in range(settings["n_layer"])]}
|
||||
|
||||
# Iterate over each variable in the checkpoint
|
||||
for name, _ in tf.train.list_variables(ckpt_path):
|
||||
# Load the variable and remove singleton dimensions
|
||||
variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
|
||||
|
||||
# Process the variable name to extract relevant parts
|
||||
variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix
|
||||
|
||||
# Identify the target dictionary for the variable
|
||||
target_dict = params
|
||||
if variable_name_parts[0].startswith("h"):
|
||||
layer_number = int(variable_name_parts[0][1:])
|
||||
target_dict = params["blocks"][layer_number]
|
||||
|
||||
# Recursively access or create nested dictionaries
|
||||
for key in variable_name_parts[1:-1]:
|
||||
target_dict = target_dict.setdefault(key, {})
|
||||
|
||||
# Assign the variable array to the last key
|
||||
last_key = variable_name_parts[-1]
|
||||
target_dict[last_key] = variable_array
|
||||
|
||||
return params
|
345
ch06/02_additional-experiments/previous_chapters.py
Normal file
345
ch06/02_additional-experiments/previous_chapters.py
Normal file
@ -0,0 +1,345 @@
|
||||
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
||||
# Source for "Build a Large Language Model From Scratch"
|
||||
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
||||
# Code: https://github.com/rasbt/LLMs-from-scratch
|
||||
#
|
||||
# This file collects all the relevant code that we covered thus far
|
||||
# throughout Chapters 2-5.
|
||||
# This file can be run as a standalone script.
|
||||
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
#####################################
|
||||
# Chapter 2
|
||||
#####################################
|
||||
|
||||
|
||||
class GPTDatasetV1(Dataset):
|
||||
def __init__(self, txt, tokenizer, max_length, stride):
|
||||
self.tokenizer = tokenizer
|
||||
self.input_ids = []
|
||||
self.target_ids = []
|
||||
|
||||
# Tokenize the entire text
|
||||
token_ids = tokenizer.encode(txt)
|
||||
|
||||
# Use a sliding window to chunk the book into overlapping sequences of max_length
|
||||
for i in range(0, len(token_ids) - max_length, stride):
|
||||
input_chunk = token_ids[i:i + max_length]
|
||||
target_chunk = token_ids[i + 1: i + max_length + 1]
|
||||
self.input_ids.append(torch.tensor(input_chunk))
|
||||
self.target_ids.append(torch.tensor(target_chunk))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.input_ids)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.input_ids[idx], self.target_ids[idx]
|
||||
|
||||
|
||||
def create_dataloader_v1(txt, batch_size=4, max_length=256,
|
||||
stride=128, shuffle=True, drop_last=True):
|
||||
# Initialize the tokenizer
|
||||
tokenizer = tiktoken.get_encoding("gpt2")
|
||||
|
||||
# Create dataset
|
||||
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
|
||||
|
||||
# Create dataloader
|
||||
dataloader = DataLoader(
|
||||
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
|
||||
|
||||
return dataloader
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 3
|
||||
#####################################
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
|
||||
super().__init__()
|
||||
assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
|
||||
|
||||
self.d_out = d_out
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
|
||||
|
||||
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
|
||||
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
|
||||
|
||||
def forward(self, x):
|
||||
b, num_tokens, d_in = x.shape
|
||||
|
||||
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
|
||||
queries = self.W_query(x)
|
||||
values = self.W_value(x)
|
||||
|
||||
# We implicitly split the matrix by adding a `num_heads` dimension
|
||||
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
|
||||
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
|
||||
|
||||
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
|
||||
keys = keys.transpose(1, 2)
|
||||
queries = queries.transpose(1, 2)
|
||||
values = values.transpose(1, 2)
|
||||
|
||||
# Compute scaled dot-product attention (aka self-attention) with a causal mask
|
||||
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
|
||||
|
||||
# Original mask truncated to the number of tokens and converted to boolean
|
||||
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
|
||||
|
||||
# Use the mask to fill attention scores
|
||||
attn_scores.masked_fill_(mask_bool, -torch.inf)
|
||||
|
||||
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
|
||||
attn_weights = self.dropout(attn_weights)
|
||||
|
||||
# Shape: (b, num_tokens, num_heads, head_dim)
|
||||
context_vec = (attn_weights @ values).transpose(1, 2)
|
||||
|
||||
# Combine heads, where self.d_out = self.num_heads * self.head_dim
|
||||
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
|
||||
context_vec = self.out_proj(context_vec) # optional projection
|
||||
|
||||
return context_vec
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 4
|
||||
#####################################
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, emb_dim):
|
||||
super().__init__()
|
||||
self.eps = 1e-5
|
||||
self.scale = nn.Parameter(torch.ones(emb_dim))
|
||||
self.shift = nn.Parameter(torch.zeros(emb_dim))
|
||||
|
||||
def forward(self, x):
|
||||
mean = x.mean(dim=-1, keepdim=True)
|
||||
var = x.var(dim=-1, keepdim=True, unbiased=False)
|
||||
norm_x = (x - mean) / torch.sqrt(var + self.eps)
|
||||
return self.scale * norm_x + self.shift
|
||||
|
||||
|
||||
class GELU(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(
|
||||
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
|
||||
(x + 0.044715 * torch.pow(x, 3))
|
||||
))
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.layers = nn.Sequential(
|
||||
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
|
||||
GELU(),
|
||||
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.att = MultiHeadAttention(
|
||||
d_in=cfg["emb_dim"],
|
||||
d_out=cfg["emb_dim"],
|
||||
context_length=cfg["context_length"],
|
||||
num_heads=cfg["n_heads"],
|
||||
dropout=cfg["drop_rate"],
|
||||
qkv_bias=cfg["qkv_bias"])
|
||||
self.ff = FeedForward(cfg)
|
||||
self.norm1 = LayerNorm(cfg["emb_dim"])
|
||||
self.norm2 = LayerNorm(cfg["emb_dim"])
|
||||
self.drop_resid = nn.Dropout(cfg["drop_rate"])
|
||||
|
||||
def forward(self, x):
|
||||
# Shortcut connection for attention block
|
||||
shortcut = x
|
||||
x = self.norm1(x)
|
||||
x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
|
||||
x = self.drop_resid(x)
|
||||
x = x + shortcut # Add the original input back
|
||||
|
||||
# Shortcut connection for feed-forward block
|
||||
shortcut = x
|
||||
x = self.norm2(x)
|
||||
x = self.ff(x)
|
||||
x = self.drop_resid(x)
|
||||
x = x + shortcut # Add the original input back
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class GPTModel(nn.Module):
|
||||
def __init__(self, cfg):
|
||||
super().__init__()
|
||||
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
|
||||
self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
|
||||
self.drop_emb = nn.Dropout(cfg["drop_rate"])
|
||||
|
||||
self.trf_blocks = nn.Sequential(
|
||||
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
|
||||
|
||||
self.final_norm = LayerNorm(cfg["emb_dim"])
|
||||
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
|
||||
|
||||
def forward(self, in_idx):
|
||||
batch_size, seq_len = in_idx.shape
|
||||
tok_embeds = self.tok_emb(in_idx)
|
||||
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
|
||||
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
|
||||
x = self.drop_emb(x)
|
||||
x = self.trf_blocks(x)
|
||||
x = self.final_norm(x)
|
||||
logits = self.out_head(x)
|
||||
return logits
|
||||
|
||||
|
||||
def generate_text_simple(model, idx, max_new_tokens, context_size):
|
||||
# idx is (B, T) array of indices in the current context
|
||||
for _ in range(max_new_tokens):
|
||||
|
||||
# Crop current context if it exceeds the supported context size
|
||||
# E.g., if LLM supports only 5 tokens, and the context size is 10
|
||||
# then only the last 5 tokens are used as context
|
||||
idx_cond = idx[:, -context_size:]
|
||||
|
||||
# Get the predictions
|
||||
with torch.no_grad():
|
||||
logits = model(idx_cond)
|
||||
|
||||
# Focus only on the last time step
|
||||
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# Get the idx of the vocab entry with the highest logits value
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
|
||||
|
||||
# Append sampled index to the running sequence
|
||||
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
|
||||
|
||||
return idx
|
||||
|
||||
|
||||
#####################################
|
||||
# Chapter 5
|
||||
#####################################
|
||||
def assign(left, right):
|
||||
if left.shape != right.shape:
|
||||
raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
|
||||
return torch.nn.Parameter(torch.tensor(right))
|
||||
|
||||
|
||||
def load_weights_into_gpt(gpt, params):
|
||||
gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
|
||||
gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
|
||||
|
||||
for b in range(len(params["blocks"])):
|
||||
q_w, k_w, v_w = np.split(
|
||||
(params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
|
||||
gpt.trf_blocks[b].att.W_query.weight = assign(
|
||||
gpt.trf_blocks[b].att.W_query.weight, q_w.T)
|
||||
gpt.trf_blocks[b].att.W_key.weight = assign(
|
||||
gpt.trf_blocks[b].att.W_key.weight, k_w.T)
|
||||
gpt.trf_blocks[b].att.W_value.weight = assign(
|
||||
gpt.trf_blocks[b].att.W_value.weight, v_w.T)
|
||||
|
||||
q_b, k_b, v_b = np.split(
|
||||
(params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
|
||||
gpt.trf_blocks[b].att.W_query.bias = assign(
|
||||
gpt.trf_blocks[b].att.W_query.bias, q_b)
|
||||
gpt.trf_blocks[b].att.W_key.bias = assign(
|
||||
gpt.trf_blocks[b].att.W_key.bias, k_b)
|
||||
gpt.trf_blocks[b].att.W_value.bias = assign(
|
||||
gpt.trf_blocks[b].att.W_value.bias, v_b)
|
||||
|
||||
gpt.trf_blocks[b].att.out_proj.weight = assign(
|
||||
gpt.trf_blocks[b].att.out_proj.weight,
|
||||
params["blocks"][b]["attn"]["c_proj"]["w"].T)
|
||||
gpt.trf_blocks[b].att.out_proj.bias = assign(
|
||||
gpt.trf_blocks[b].att.out_proj.bias,
|
||||
params["blocks"][b]["attn"]["c_proj"]["b"])
|
||||
|
||||
gpt.trf_blocks[b].ff.layers[0].weight = assign(
|
||||
gpt.trf_blocks[b].ff.layers[0].weight,
|
||||
params["blocks"][b]["mlp"]["c_fc"]["w"].T)
|
||||
gpt.trf_blocks[b].ff.layers[0].bias = assign(
|
||||
gpt.trf_blocks[b].ff.layers[0].bias,
|
||||
params["blocks"][b]["mlp"]["c_fc"]["b"])
|
||||
gpt.trf_blocks[b].ff.layers[2].weight = assign(
|
||||
gpt.trf_blocks[b].ff.layers[2].weight,
|
||||
params["blocks"][b]["mlp"]["c_proj"]["w"].T)
|
||||
gpt.trf_blocks[b].ff.layers[2].bias = assign(
|
||||
gpt.trf_blocks[b].ff.layers[2].bias,
|
||||
params["blocks"][b]["mlp"]["c_proj"]["b"])
|
||||
|
||||
gpt.trf_blocks[b].norm1.scale = assign(
|
||||
gpt.trf_blocks[b].norm1.scale,
|
||||
params["blocks"][b]["ln_1"]["g"])
|
||||
gpt.trf_blocks[b].norm1.shift = assign(
|
||||
gpt.trf_blocks[b].norm1.shift,
|
||||
params["blocks"][b]["ln_1"]["b"])
|
||||
gpt.trf_blocks[b].norm2.scale = assign(
|
||||
gpt.trf_blocks[b].norm2.scale,
|
||||
params["blocks"][b]["ln_2"]["g"])
|
||||
gpt.trf_blocks[b].norm2.shift = assign(
|
||||
gpt.trf_blocks[b].norm2.shift,
|
||||
params["blocks"][b]["ln_2"]["b"])
|
||||
|
||||
gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
|
||||
gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
|
||||
gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
|
||||
|
||||
|
||||
def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None):
|
||||
# For-loop is the same as before: Get logits, and only focus on last time step
|
||||
for _ in range(max_new_tokens):
|
||||
idx_cond = idx[:, -context_size:]
|
||||
with torch.no_grad():
|
||||
logits = model(idx_cond)
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
# New: Filter logits with top_k sampling
|
||||
if top_k is not None:
|
||||
# Keep only top_k values
|
||||
top_logits, _ = torch.topk(logits, top_k)
|
||||
min_val = top_logits[:, -1]
|
||||
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
|
||||
|
||||
# New: Apply temperature scaling
|
||||
if temperature > 0.0:
|
||||
logits = logits / temperature
|
||||
|
||||
# Apply softmax to get probabilities
|
||||
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
|
||||
|
||||
# Sample from the distribution
|
||||
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
|
||||
|
||||
# Otherwise same as before: get idx of the vocab entry with the highest logits value
|
||||
else:
|
||||
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
|
||||
|
||||
# Same as before: append sampled index to the running sequence
|
||||
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
|
||||
|
||||
return idx
|
Loading…
x
Reference in New Issue
Block a user