mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-25 23:11:23 +00:00 
			
		
		
		
	Chapter 6 ablation studies (#127)
* Chapter 6 ablation studies * add table * formatting * formatting * formatting
This commit is contained in:
		
							parent
							
								
									44a009f7e6
								
							
						
					
					
						commit
						f656ef996d
					
				
							
								
								
									
										1
									
								
								ch06/01_main-chapter-code/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								ch06/01_main-chapter-code/README.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1 @@ | |||||||
|  | In progress. | ||||||
							
								
								
									
										10
									
								
								ch06/02_additional-experiments/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										10
									
								
								ch06/02_additional-experiments/README.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,10 @@ | |||||||
|  | # Additional Experiments | ||||||
|  | 
 | ||||||
|  | | Model              | Trainable token | Trainable layers | CPU/GPU | Training time | Training acc | Validation acc | Test acc | | ||||||
|  | |--------------------|-----------------|------------------|---------|---------------|--------------|----------------|----------| | ||||||
|  | | gpt2-small (124M)  | last            | last_block       | V100    | 0.39 min      | 96.63%       | 97.99%         | 94.33%   | | ||||||
|  | | gpt2-small (124M)  | first           | last_block       | V100    | 0.37 min      | 78.46%       | 80.54%         | 75.00%   | | ||||||
|  | | gpt2-small (124M)  | last            | last_layer       | V100    | 0.33 min      | 78.65%       | 87.25%         | 78.33%   | | ||||||
|  | | gpt2-small (124M)  | last            | all              | V100    | 0.94 min      | 99.62%       | 96.64%         | 96.33%   | | ||||||
|  | | gpt2-medium (355M) | last            | last_block       | V100    | 0.91 min      | 87.50%       | 51.01%         | 56.67%   | | ||||||
|  | | gpt2-large (774M)  | last            | last_block       | V100    | 1.91 min      | 99.52%       | 98.66%         | 96.67%   | | ||||||
							
								
								
									
										393
									
								
								ch06/02_additional-experiments/additional-experiments.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										393
									
								
								ch06/02_additional-experiments/additional-experiments.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,393 @@ | |||||||
|  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||||||
|  | # Source for "Build a Large Language Model From Scratch" | ||||||
|  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||||||
|  | # Code: https://github.com/rasbt/LLMs-from-scratch | ||||||
|  | 
 | ||||||
|  | import argparse | ||||||
|  | import os | ||||||
|  | from pathlib import Path | ||||||
|  | import time | ||||||
|  | import urllib.request | ||||||
|  | import zipfile | ||||||
|  | 
 | ||||||
|  | import pandas as pd | ||||||
|  | import tiktoken | ||||||
|  | import torch | ||||||
|  | from torch.utils.data import DataLoader | ||||||
|  | from torch.utils.data import Dataset | ||||||
|  | 
 | ||||||
|  | from gpt_download import download_and_load_gpt2 | ||||||
|  | from previous_chapters import GPTModel, load_weights_into_gpt | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class SpamDataset(Dataset): | ||||||
|  |     def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256): | ||||||
|  |         self.data = pd.read_csv(csv_file) | ||||||
|  |         self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer) | ||||||
|  | 
 | ||||||
|  |         # Pre-tokenize texts | ||||||
|  |         self.encoded_texts = [ | ||||||
|  |             tokenizer.encode(text)[:self.max_length] | ||||||
|  |             for text in self.data["Text"] | ||||||
|  |         ] | ||||||
|  |         # Pad sequences to the longest sequence | ||||||
|  |         self.encoded_texts = [ | ||||||
|  |             et + [pad_token_id] * (self.max_length - len(et)) | ||||||
|  |             for et in self.encoded_texts | ||||||
|  |         ] | ||||||
|  | 
 | ||||||
|  |     def __getitem__(self, index): | ||||||
|  |         encoded = self.encoded_texts[index] | ||||||
|  |         label = self.data.iloc[index]["Label"] | ||||||
|  |         return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long) | ||||||
|  | 
 | ||||||
|  |     def __len__(self): | ||||||
|  |         return len(self.data) | ||||||
|  | 
 | ||||||
|  |     def _longest_encoded_length(self, tokenizer): | ||||||
|  |         max_length = 0 | ||||||
|  |         for text in self.data["Text"]: | ||||||
|  |             encoded_length = len(tokenizer.encode(text)) | ||||||
|  |             if encoded_length > max_length: | ||||||
|  |                 max_length = encoded_length | ||||||
|  |         return max_length | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def download_and_unzip(url, zip_path, extract_to, new_file_path): | ||||||
|  |     if new_file_path.exists(): | ||||||
|  |         print(f"{new_file_path} already exists. Skipping download and extraction.") | ||||||
|  |         return | ||||||
|  | 
 | ||||||
|  |     # Downloading the file | ||||||
|  |     with urllib.request.urlopen(url) as response: | ||||||
|  |         with open(zip_path, "wb") as out_file: | ||||||
|  |             out_file.write(response.read()) | ||||||
|  | 
 | ||||||
|  |     # Unzipping the file | ||||||
|  |     with zipfile.ZipFile(zip_path, 'r') as zip_ref: | ||||||
|  |         zip_ref.extractall(extract_to) | ||||||
|  | 
 | ||||||
|  |     # Renaming the file to indicate its format | ||||||
|  |     original_file = Path(extract_to) / "SMSSpamCollection" | ||||||
|  |     os.rename(original_file, new_file_path) | ||||||
|  |     print(f"File downloaded and saved as {new_file_path}") | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def random_split(df, train_frac, validation_frac): | ||||||
|  |     # Shuffle the entire DataFrame | ||||||
|  |     df = df.sample(frac=1, random_state=123).reset_index(drop=True) | ||||||
|  | 
 | ||||||
|  |     # Calculate split indices | ||||||
|  |     train_end = int(len(df) * train_frac) | ||||||
|  |     validation_end = train_end + int(len(df) * validation_frac) | ||||||
|  | 
 | ||||||
|  |     # Split the DataFrame | ||||||
|  |     train_df = df[:train_end] | ||||||
|  |     validation_df = df[train_end:validation_end] | ||||||
|  |     test_df = df[validation_end:] | ||||||
|  | 
 | ||||||
|  |     return train_df, validation_df, test_df | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def create_dataset_csvs(data_file_path): | ||||||
|  |     df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"]) | ||||||
|  | 
 | ||||||
|  |     # Create balanced dataset | ||||||
|  |     n_spam = df[df["Label"] == "spam"].shape[0] | ||||||
|  |     ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123) | ||||||
|  |     balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]]) | ||||||
|  |     balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True) | ||||||
|  |     balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1}) | ||||||
|  | 
 | ||||||
|  |     # Sample and save csv files | ||||||
|  |     train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1) | ||||||
|  |     train_df.to_csv("train.csv", index=None) | ||||||
|  |     validation_df.to_csv("validation.csv", index=None) | ||||||
|  |     test_df.to_csv("test.csv", index=None) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def instantiate_model(choose_model): | ||||||
|  | 
 | ||||||
|  |     BASE_CONFIG = { | ||||||
|  |         "vocab_size": 50257,     # Vocabulary size | ||||||
|  |         "context_length": 1024,  # Context length | ||||||
|  |         "drop_rate": 0.0,        # Dropout rate | ||||||
|  |         "qkv_bias": True         # Query-key-value bias | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     model_configs = { | ||||||
|  |         "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12}, | ||||||
|  |         "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16}, | ||||||
|  |         "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20}, | ||||||
|  |         "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25}, | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     BASE_CONFIG.update(model_configs[choose_model]) | ||||||
|  | 
 | ||||||
|  |     model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")") | ||||||
|  |     settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2") | ||||||
|  | 
 | ||||||
|  |     model = GPTModel(BASE_CONFIG) | ||||||
|  |     load_weights_into_gpt(model, params) | ||||||
|  |     model.eval() | ||||||
|  |     return model | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1): | ||||||
|  |     input_batch, target_batch = input_batch.to(device), target_batch.to(device) | ||||||
|  |     logits = model(input_batch)[:, trainable_token, :]  # Logits of last ouput token | ||||||
|  |     loss = torch.nn.functional.cross_entropy(logits, target_batch) | ||||||
|  |     return loss | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_token=-1): | ||||||
|  |     total_loss = 0. | ||||||
|  |     if len(data_loader) == 0: | ||||||
|  |         return float("nan") | ||||||
|  |     elif num_batches is None: | ||||||
|  |         num_batches = len(data_loader) | ||||||
|  |     else: | ||||||
|  |         # Reduce the number of batches to match the total number of batches in the data loader | ||||||
|  |         # if num_batches exceeds the number of batches in the data loader | ||||||
|  |         num_batches = min(num_batches, len(data_loader)) | ||||||
|  |     for i, (input_batch, target_batch) in enumerate(data_loader): | ||||||
|  |         if i < num_batches: | ||||||
|  |             loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token) | ||||||
|  |             total_loss += loss.item() | ||||||
|  |         else: | ||||||
|  |             break | ||||||
|  |     return total_loss / num_batches | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | @torch.no_grad()  # Disable gradient tracking for efficiency | ||||||
|  | def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token=-1): | ||||||
|  |     model.eval() | ||||||
|  |     correct_predictions, num_examples = 0, 0 | ||||||
|  | 
 | ||||||
|  |     if num_batches is None: | ||||||
|  |         num_batches = len(data_loader) | ||||||
|  |     else: | ||||||
|  |         num_batches = min(num_batches, len(data_loader)) | ||||||
|  |     for i, (input_batch, target_batch) in enumerate(data_loader): | ||||||
|  |         if i < num_batches: | ||||||
|  |             input_batch, target_batch = input_batch.to(device), target_batch.to(device) | ||||||
|  |             logits = model(input_batch)[:, trainable_token, :]  # Logits of last ouput token | ||||||
|  |             predicted_labels = torch.argmax(logits, dim=-1) | ||||||
|  | 
 | ||||||
|  |             num_examples += predicted_labels.shape[0] | ||||||
|  |             correct_predictions += (predicted_labels == target_batch).sum().item() | ||||||
|  |         else: | ||||||
|  |             break | ||||||
|  |     return correct_predictions / num_examples | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def evaluate_model(model, train_loader, val_loader, device, eval_iter, trainable_token=-1): | ||||||
|  |     model.eval() | ||||||
|  |     with torch.no_grad(): | ||||||
|  |         train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token) | ||||||
|  |         val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token) | ||||||
|  |     model.train() | ||||||
|  |     return train_loss, val_loss | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs, | ||||||
|  |                             eval_freq, eval_iter, tokenizer, max_steps=None, trainable_token=-1): | ||||||
|  |     # Initialize lists to track losses and tokens seen | ||||||
|  |     train_losses, val_losses, train_accs, val_accs = [], [], [], [] | ||||||
|  |     examples_seen, global_step = 0, -1 | ||||||
|  | 
 | ||||||
|  |     # Main training loop | ||||||
|  |     for epoch in range(num_epochs): | ||||||
|  |         model.train()  # Set model to training mode | ||||||
|  | 
 | ||||||
|  |         for input_batch, target_batch in train_loader: | ||||||
|  |             optimizer.zero_grad()  # Reset loss gradients from previous epoch | ||||||
|  |             loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token) | ||||||
|  |             loss.backward()  # Calculate loss gradients | ||||||
|  |             optimizer.step()  # Update model weights using loss gradients | ||||||
|  |             examples_seen += input_batch.shape[0]  # New: track examples instead of tokens | ||||||
|  |             global_step += 1 | ||||||
|  | 
 | ||||||
|  |             # Optional evaluation step | ||||||
|  |             if global_step % eval_freq == 0: | ||||||
|  |                 train_loss, val_loss = evaluate_model( | ||||||
|  |                     model, train_loader, val_loader, device, eval_iter, trainable_token=trainable_token) | ||||||
|  |                 train_losses.append(train_loss) | ||||||
|  |                 val_losses.append(val_loss) | ||||||
|  |                 print(f"Ep {epoch+1} (Step {global_step:06d}): " | ||||||
|  |                       f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}") | ||||||
|  | 
 | ||||||
|  |             if max_steps is not None and global_step > max_steps: | ||||||
|  |                 break | ||||||
|  | 
 | ||||||
|  |         # New: Calculate accuracy after each epoch | ||||||
|  |         train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token) | ||||||
|  |         val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token) | ||||||
|  |         print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="") | ||||||
|  |         print(f"Validation accuracy: {val_accuracy*100:.2f}%") | ||||||
|  |         train_accs.append(train_accuracy) | ||||||
|  |         val_accs.append(val_accuracy) | ||||||
|  | 
 | ||||||
|  |         if max_steps is not None and global_step > max_steps: | ||||||
|  |             break | ||||||
|  | 
 | ||||||
|  |     return train_losses, val_losses, train_accs, val_accs, examples_seen | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | if __name__ == "__main__": | ||||||
|  | 
 | ||||||
|  |     parser = argparse.ArgumentParser() | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--model_size", | ||||||
|  |         type=str, | ||||||
|  |         default="gpt2-small (124M)", | ||||||
|  |         help=( | ||||||
|  |             "Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)'," | ||||||
|  |             " 'gpt2-large (774M)', 'gpt2-xl (1558M)'." | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--trainable_layers", | ||||||
|  |         type=str, | ||||||
|  |         default="last_block", | ||||||
|  |         help=( | ||||||
|  |             "Which layers to train. Options: 'all', 'last_block', 'last_layer'." | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     parser.add_argument( | ||||||
|  |         "--trainable_token", | ||||||
|  |         type=str, | ||||||
|  |         default="last", | ||||||
|  |         help=( | ||||||
|  |             "Which token to train. Options: 'first', 'last'." | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  |     args = parser.parse_args() | ||||||
|  | 
 | ||||||
|  |     if args.trainable_token == "first": | ||||||
|  |         args.trainable_token = 0 | ||||||
|  |     elif args.trainable_token == "last": | ||||||
|  |         args.trainable_token = -1 | ||||||
|  |     else: | ||||||
|  |         raise ValueError("Invalid --trainable_token argument") | ||||||
|  | 
 | ||||||
|  |     ############################### | ||||||
|  |     # Instantiate dataloaders | ||||||
|  |     ############################### | ||||||
|  | 
 | ||||||
|  |     url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip" | ||||||
|  |     zip_path = "sms_spam_collection.zip" | ||||||
|  |     extract_to = "sms_spam_collection" | ||||||
|  |     new_file_path = Path(extract_to) / "SMSSpamCollection.tsv" | ||||||
|  | 
 | ||||||
|  |     base_path = Path(".") | ||||||
|  |     file_names = ["train.csv", "validation.csv", "test.csv"] | ||||||
|  |     all_exist = all((base_path / file_name).exists() for file_name in file_names) | ||||||
|  | 
 | ||||||
|  |     if not all_exist: | ||||||
|  |         download_and_unzip(url, zip_path, extract_to, new_file_path) | ||||||
|  |         create_dataset_csvs(new_file_path) | ||||||
|  | 
 | ||||||
|  |     tokenizer = tiktoken.get_encoding("gpt2") | ||||||
|  | 
 | ||||||
|  |     train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer) | ||||||
|  |     val_dataset = SpamDataset(base_path / "validation.csv", max_length=None, tokenizer=tokenizer) | ||||||
|  |     test_dataset = SpamDataset(base_path / "test.csv", max_length=None, tokenizer=tokenizer) | ||||||
|  | 
 | ||||||
|  |     tokenizer = tiktoken.get_encoding("gpt2") | ||||||
|  | 
 | ||||||
|  |     num_workers = 0 | ||||||
|  |     batch_size = 8 | ||||||
|  | 
 | ||||||
|  |     train_loader = DataLoader( | ||||||
|  |         dataset=train_dataset, | ||||||
|  |         batch_size=batch_size, | ||||||
|  |         shuffle=True, | ||||||
|  |         num_workers=num_workers, | ||||||
|  |         drop_last=True, | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  |     val_loader = DataLoader( | ||||||
|  |         dataset=val_dataset, | ||||||
|  |         batch_size=batch_size, | ||||||
|  |         num_workers=num_workers, | ||||||
|  |         drop_last=False, | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  |     test_loader = DataLoader( | ||||||
|  |         dataset=test_dataset, | ||||||
|  |         batch_size=batch_size, | ||||||
|  |         num_workers=num_workers, | ||||||
|  |         drop_last=False, | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  |     ############################### | ||||||
|  |     # Load model | ||||||
|  |     ############################### | ||||||
|  | 
 | ||||||
|  |     model = instantiate_model(args.model_size) | ||||||
|  |     for param in model.parameters(): | ||||||
|  |         param.requires_grad = False | ||||||
|  | 
 | ||||||
|  |     if args.model_size == "gpt2-small (124M)": | ||||||
|  |         in_features = 768 | ||||||
|  |     elif args.model_size == "gpt2-medium (355M)": | ||||||
|  |         in_features = 1024 | ||||||
|  |     elif args.model_size == "gpt2-large (774M)": | ||||||
|  |         in_features = 1280 | ||||||
|  |     elif args.model_size == "gpt2-xl (1558M)": | ||||||
|  |         in_features = 1280 | ||||||
|  |     else: | ||||||
|  |         raise ValueError("Invalid --model_size argument") | ||||||
|  | 
 | ||||||
|  |     torch.manual_seed(123) | ||||||
|  |     print(model.out_head.weight.shape) | ||||||
|  |     model.out_head = torch.nn.Linear(in_features=in_features, out_features=2) | ||||||
|  | 
 | ||||||
|  |     if args.trainable_layers == "last_layer": | ||||||
|  |         pass | ||||||
|  |     elif args.trainable_layers == "last_block": | ||||||
|  |         for param in model.trf_blocks[-1].parameters(): | ||||||
|  |             param.requires_grad = True | ||||||
|  |         for param in model.final_norm.parameters(): | ||||||
|  |             param.requires_grad = True | ||||||
|  |     elif args.trainable_layers == "all": | ||||||
|  |         for param in model.parameters(): | ||||||
|  |             param.requires_grad = True | ||||||
|  |     else: | ||||||
|  |         raise ValueError("Invalid --trainable_layers argument.") | ||||||
|  | 
 | ||||||
|  |     device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||||||
|  |     model.to(device) | ||||||
|  | 
 | ||||||
|  |     ############################### | ||||||
|  |     # Train model | ||||||
|  |     ############################### | ||||||
|  | 
 | ||||||
|  |     start_time = time.time() | ||||||
|  |     torch.manual_seed(123) | ||||||
|  |     optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1) | ||||||
|  | 
 | ||||||
|  |     num_epochs = 5 | ||||||
|  |     train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple( | ||||||
|  |         model, train_loader, val_loader, optimizer, device, | ||||||
|  |         num_epochs=num_epochs, eval_freq=50, eval_iter=5, | ||||||
|  |         tokenizer=tokenizer, max_steps=None, trainable_token=args.trainable_token | ||||||
|  |     ) | ||||||
|  | 
 | ||||||
|  |     end_time = time.time() | ||||||
|  |     execution_time_minutes = (end_time - start_time) / 60 | ||||||
|  |     print(f"Training completed in {execution_time_minutes:.2f} minutes.") | ||||||
|  | 
 | ||||||
|  |     ############################### | ||||||
|  |     # Evaluate model | ||||||
|  |     ############################### | ||||||
|  | 
 | ||||||
|  |     train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token=args.trainable_token) | ||||||
|  |     val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token=args.trainable_token) | ||||||
|  |     test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token=args.trainable_token) | ||||||
|  | 
 | ||||||
|  |     print(f"Training accuracy: {train_accuracy*100:.2f}%") | ||||||
|  |     print(f"Validation accuracy: {val_accuracy*100:.2f}%") | ||||||
|  |     print(f"Test accuracy: {test_accuracy*100:.2f}%") | ||||||
							
								
								
									
										99
									
								
								ch06/02_additional-experiments/gpt_download.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								ch06/02_additional-experiments/gpt_download.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,99 @@ | |||||||
|  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||||||
|  | # Source for "Build a Large Language Model From Scratch" | ||||||
|  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||||||
|  | # Code: https://github.com/rasbt/LLMs-from-scratch | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | import os | ||||||
|  | import requests | ||||||
|  | import json | ||||||
|  | import numpy as np | ||||||
|  | import tensorflow as tf | ||||||
|  | from tqdm import tqdm | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def download_and_load_gpt2(model_size, models_dir): | ||||||
|  |     # Validate model size | ||||||
|  |     allowed_sizes = ("124M", "355M", "774M", "1558M") | ||||||
|  |     if model_size not in allowed_sizes: | ||||||
|  |         raise ValueError(f"Model size not in {allowed_sizes}") | ||||||
|  | 
 | ||||||
|  |     # Define paths | ||||||
|  |     model_dir = os.path.join(models_dir, model_size) | ||||||
|  |     base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" | ||||||
|  |     filenames = [ | ||||||
|  |         "checkpoint", "encoder.json", "hparams.json", | ||||||
|  |         "model.ckpt.data-00000-of-00001", "model.ckpt.index", | ||||||
|  |         "model.ckpt.meta", "vocab.bpe" | ||||||
|  |     ] | ||||||
|  | 
 | ||||||
|  |     # Download files | ||||||
|  |     os.makedirs(model_dir, exist_ok=True) | ||||||
|  |     for filename in filenames: | ||||||
|  |         file_url = os.path.join(base_url, model_size, filename) | ||||||
|  |         file_path = os.path.join(model_dir, filename) | ||||||
|  |         download_file(file_url, file_path) | ||||||
|  | 
 | ||||||
|  |     # Load settings and params | ||||||
|  |     tf_ckpt_path = tf.train.latest_checkpoint(model_dir) | ||||||
|  |     settings = json.load(open(os.path.join(model_dir, "hparams.json"))) | ||||||
|  |     params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) | ||||||
|  | 
 | ||||||
|  |     return settings, params | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def download_file(url, destination): | ||||||
|  |     # Send a GET request to download the file in streaming mode | ||||||
|  |     response = requests.get(url, stream=True) | ||||||
|  | 
 | ||||||
|  |     # Get the total file size from headers, defaulting to 0 if not present | ||||||
|  |     file_size = int(response.headers.get("content-length", 0)) | ||||||
|  | 
 | ||||||
|  |     # Check if file exists and has the same size | ||||||
|  |     if os.path.exists(destination): | ||||||
|  |         file_size_local = os.path.getsize(destination) | ||||||
|  |         if file_size == file_size_local: | ||||||
|  |             print(f"File already exists and is up-to-date: {destination}") | ||||||
|  |             return | ||||||
|  | 
 | ||||||
|  |     # Define the block size for reading the file | ||||||
|  |     block_size = 1024  # 1 Kilobyte | ||||||
|  | 
 | ||||||
|  |     # Initialize the progress bar with total file size | ||||||
|  |     progress_bar_description = url.split("/")[-1]  # Extract filename from URL | ||||||
|  |     with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: | ||||||
|  |         # Open the destination file in binary write mode | ||||||
|  |         with open(destination, "wb") as file: | ||||||
|  |             # Iterate over the file data in chunks | ||||||
|  |             for chunk in response.iter_content(block_size): | ||||||
|  |                 progress_bar.update(len(chunk))  # Update progress bar | ||||||
|  |                 file.write(chunk)  # Write the chunk to the file | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): | ||||||
|  |     # Initialize parameters dictionary with empty blocks for each layer | ||||||
|  |     params = {"blocks": [{} for _ in range(settings["n_layer"])]} | ||||||
|  | 
 | ||||||
|  |     # Iterate over each variable in the checkpoint | ||||||
|  |     for name, _ in tf.train.list_variables(ckpt_path): | ||||||
|  |         # Load the variable and remove singleton dimensions | ||||||
|  |         variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) | ||||||
|  | 
 | ||||||
|  |         # Process the variable name to extract relevant parts | ||||||
|  |         variable_name_parts = name.split("/")[1:]  # Skip the 'model/' prefix | ||||||
|  | 
 | ||||||
|  |         # Identify the target dictionary for the variable | ||||||
|  |         target_dict = params | ||||||
|  |         if variable_name_parts[0].startswith("h"): | ||||||
|  |             layer_number = int(variable_name_parts[0][1:]) | ||||||
|  |             target_dict = params["blocks"][layer_number] | ||||||
|  | 
 | ||||||
|  |         # Recursively access or create nested dictionaries | ||||||
|  |         for key in variable_name_parts[1:-1]: | ||||||
|  |             target_dict = target_dict.setdefault(key, {}) | ||||||
|  | 
 | ||||||
|  |         # Assign the variable array to the last key | ||||||
|  |         last_key = variable_name_parts[-1] | ||||||
|  |         target_dict[last_key] = variable_array | ||||||
|  | 
 | ||||||
|  |     return params | ||||||
							
								
								
									
										345
									
								
								ch06/02_additional-experiments/previous_chapters.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										345
									
								
								ch06/02_additional-experiments/previous_chapters.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,345 @@ | |||||||
|  | # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). | ||||||
|  | # Source for "Build a Large Language Model From Scratch" | ||||||
|  | #   - https://www.manning.com/books/build-a-large-language-model-from-scratch | ||||||
|  | # Code: https://github.com/rasbt/LLMs-from-scratch | ||||||
|  | # | ||||||
|  | # This file collects all the relevant code that we covered thus far | ||||||
|  | # throughout Chapters 2-5. | ||||||
|  | # This file can be run as a standalone script. | ||||||
|  | 
 | ||||||
|  | import numpy as np | ||||||
|  | import tiktoken | ||||||
|  | import torch | ||||||
|  | import torch.nn as nn | ||||||
|  | from torch.utils.data import Dataset, DataLoader | ||||||
|  | 
 | ||||||
|  | ##################################### | ||||||
|  | # Chapter 2 | ||||||
|  | ##################################### | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class GPTDatasetV1(Dataset): | ||||||
|  |     def __init__(self, txt, tokenizer, max_length, stride): | ||||||
|  |         self.tokenizer = tokenizer | ||||||
|  |         self.input_ids = [] | ||||||
|  |         self.target_ids = [] | ||||||
|  | 
 | ||||||
|  |         # Tokenize the entire text | ||||||
|  |         token_ids = tokenizer.encode(txt) | ||||||
|  | 
 | ||||||
|  |         # Use a sliding window to chunk the book into overlapping sequences of max_length | ||||||
|  |         for i in range(0, len(token_ids) - max_length, stride): | ||||||
|  |             input_chunk = token_ids[i:i + max_length] | ||||||
|  |             target_chunk = token_ids[i + 1: i + max_length + 1] | ||||||
|  |             self.input_ids.append(torch.tensor(input_chunk)) | ||||||
|  |             self.target_ids.append(torch.tensor(target_chunk)) | ||||||
|  | 
 | ||||||
|  |     def __len__(self): | ||||||
|  |         return len(self.input_ids) | ||||||
|  | 
 | ||||||
|  |     def __getitem__(self, idx): | ||||||
|  |         return self.input_ids[idx], self.target_ids[idx] | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def create_dataloader_v1(txt, batch_size=4, max_length=256, | ||||||
|  |                          stride=128, shuffle=True, drop_last=True): | ||||||
|  |     # Initialize the tokenizer | ||||||
|  |     tokenizer = tiktoken.get_encoding("gpt2") | ||||||
|  | 
 | ||||||
|  |     # Create dataset | ||||||
|  |     dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) | ||||||
|  | 
 | ||||||
|  |     # Create dataloader | ||||||
|  |     dataloader = DataLoader( | ||||||
|  |         dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last) | ||||||
|  | 
 | ||||||
|  |     return dataloader | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | ##################################### | ||||||
|  | # Chapter 3 | ||||||
|  | ##################################### | ||||||
|  | class MultiHeadAttention(nn.Module): | ||||||
|  |     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): | ||||||
|  |         super().__init__() | ||||||
|  |         assert d_out % num_heads == 0, "d_out must be divisible by n_heads" | ||||||
|  | 
 | ||||||
|  |         self.d_out = d_out | ||||||
|  |         self.num_heads = num_heads | ||||||
|  |         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim | ||||||
|  | 
 | ||||||
|  |         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) | ||||||
|  |         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) | ||||||
|  |         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) | ||||||
|  |         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs | ||||||
|  |         self.dropout = nn.Dropout(dropout) | ||||||
|  |         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) | ||||||
|  | 
 | ||||||
|  |     def forward(self, x): | ||||||
|  |         b, num_tokens, d_in = x.shape | ||||||
|  | 
 | ||||||
|  |         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out) | ||||||
|  |         queries = self.W_query(x) | ||||||
|  |         values = self.W_value(x) | ||||||
|  | 
 | ||||||
|  |         # We implicitly split the matrix by adding a `num_heads` dimension | ||||||
|  |         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) | ||||||
|  |         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) | ||||||
|  |         values = values.view(b, num_tokens, self.num_heads, self.head_dim) | ||||||
|  |         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) | ||||||
|  | 
 | ||||||
|  |         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) | ||||||
|  |         keys = keys.transpose(1, 2) | ||||||
|  |         queries = queries.transpose(1, 2) | ||||||
|  |         values = values.transpose(1, 2) | ||||||
|  | 
 | ||||||
|  |         # Compute scaled dot-product attention (aka self-attention) with a causal mask | ||||||
|  |         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head | ||||||
|  | 
 | ||||||
|  |         # Original mask truncated to the number of tokens and converted to boolean | ||||||
|  |         mask_bool = self.mask.bool()[:num_tokens, :num_tokens] | ||||||
|  | 
 | ||||||
|  |         # Use the mask to fill attention scores | ||||||
|  |         attn_scores.masked_fill_(mask_bool, -torch.inf) | ||||||
|  | 
 | ||||||
|  |         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) | ||||||
|  |         attn_weights = self.dropout(attn_weights) | ||||||
|  | 
 | ||||||
|  |         # Shape: (b, num_tokens, num_heads, head_dim) | ||||||
|  |         context_vec = (attn_weights @ values).transpose(1, 2) | ||||||
|  | 
 | ||||||
|  |         # Combine heads, where self.d_out = self.num_heads * self.head_dim | ||||||
|  |         context_vec = context_vec.reshape(b, num_tokens, self.d_out) | ||||||
|  |         context_vec = self.out_proj(context_vec)  # optional projection | ||||||
|  | 
 | ||||||
|  |         return context_vec | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | ##################################### | ||||||
|  | # Chapter 4 | ||||||
|  | ##################################### | ||||||
|  | class LayerNorm(nn.Module): | ||||||
|  |     def __init__(self, emb_dim): | ||||||
|  |         super().__init__() | ||||||
|  |         self.eps = 1e-5 | ||||||
|  |         self.scale = nn.Parameter(torch.ones(emb_dim)) | ||||||
|  |         self.shift = nn.Parameter(torch.zeros(emb_dim)) | ||||||
|  | 
 | ||||||
|  |     def forward(self, x): | ||||||
|  |         mean = x.mean(dim=-1, keepdim=True) | ||||||
|  |         var = x.var(dim=-1, keepdim=True, unbiased=False) | ||||||
|  |         norm_x = (x - mean) / torch.sqrt(var + self.eps) | ||||||
|  |         return self.scale * norm_x + self.shift | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class GELU(nn.Module): | ||||||
|  |     def __init__(self): | ||||||
|  |         super().__init__() | ||||||
|  | 
 | ||||||
|  |     def forward(self, x): | ||||||
|  |         return 0.5 * x * (1 + torch.tanh( | ||||||
|  |             torch.sqrt(torch.tensor(2.0 / torch.pi)) * | ||||||
|  |             (x + 0.044715 * torch.pow(x, 3)) | ||||||
|  |         )) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class FeedForward(nn.Module): | ||||||
|  |     def __init__(self, cfg): | ||||||
|  |         super().__init__() | ||||||
|  |         self.layers = nn.Sequential( | ||||||
|  |             nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), | ||||||
|  |             GELU(), | ||||||
|  |             nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |     def forward(self, x): | ||||||
|  |         return self.layers(x) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class TransformerBlock(nn.Module): | ||||||
|  |     def __init__(self, cfg): | ||||||
|  |         super().__init__() | ||||||
|  |         self.att = MultiHeadAttention( | ||||||
|  |             d_in=cfg["emb_dim"], | ||||||
|  |             d_out=cfg["emb_dim"], | ||||||
|  |             context_length=cfg["context_length"], | ||||||
|  |             num_heads=cfg["n_heads"], | ||||||
|  |             dropout=cfg["drop_rate"], | ||||||
|  |             qkv_bias=cfg["qkv_bias"]) | ||||||
|  |         self.ff = FeedForward(cfg) | ||||||
|  |         self.norm1 = LayerNorm(cfg["emb_dim"]) | ||||||
|  |         self.norm2 = LayerNorm(cfg["emb_dim"]) | ||||||
|  |         self.drop_resid = nn.Dropout(cfg["drop_rate"]) | ||||||
|  | 
 | ||||||
|  |     def forward(self, x): | ||||||
|  |         # Shortcut connection for attention block | ||||||
|  |         shortcut = x | ||||||
|  |         x = self.norm1(x) | ||||||
|  |         x = self.att(x)   # Shape [batch_size, num_tokens, emb_size] | ||||||
|  |         x = self.drop_resid(x) | ||||||
|  |         x = x + shortcut  # Add the original input back | ||||||
|  | 
 | ||||||
|  |         # Shortcut connection for feed-forward block | ||||||
|  |         shortcut = x | ||||||
|  |         x = self.norm2(x) | ||||||
|  |         x = self.ff(x) | ||||||
|  |         x = self.drop_resid(x) | ||||||
|  |         x = x + shortcut  # Add the original input back | ||||||
|  | 
 | ||||||
|  |         return x | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class GPTModel(nn.Module): | ||||||
|  |     def __init__(self, cfg): | ||||||
|  |         super().__init__() | ||||||
|  |         self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) | ||||||
|  |         self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) | ||||||
|  |         self.drop_emb = nn.Dropout(cfg["drop_rate"]) | ||||||
|  | 
 | ||||||
|  |         self.trf_blocks = nn.Sequential( | ||||||
|  |             *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) | ||||||
|  | 
 | ||||||
|  |         self.final_norm = LayerNorm(cfg["emb_dim"]) | ||||||
|  |         self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) | ||||||
|  | 
 | ||||||
|  |     def forward(self, in_idx): | ||||||
|  |         batch_size, seq_len = in_idx.shape | ||||||
|  |         tok_embeds = self.tok_emb(in_idx) | ||||||
|  |         pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) | ||||||
|  |         x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size] | ||||||
|  |         x = self.drop_emb(x) | ||||||
|  |         x = self.trf_blocks(x) | ||||||
|  |         x = self.final_norm(x) | ||||||
|  |         logits = self.out_head(x) | ||||||
|  |         return logits | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def generate_text_simple(model, idx, max_new_tokens, context_size): | ||||||
|  |     # idx is (B, T) array of indices in the current context | ||||||
|  |     for _ in range(max_new_tokens): | ||||||
|  | 
 | ||||||
|  |         # Crop current context if it exceeds the supported context size | ||||||
|  |         # E.g., if LLM supports only 5 tokens, and the context size is 10 | ||||||
|  |         # then only the last 5 tokens are used as context | ||||||
|  |         idx_cond = idx[:, -context_size:] | ||||||
|  | 
 | ||||||
|  |         # Get the predictions | ||||||
|  |         with torch.no_grad(): | ||||||
|  |             logits = model(idx_cond) | ||||||
|  | 
 | ||||||
|  |         # Focus only on the last time step | ||||||
|  |         # (batch, n_token, vocab_size) becomes (batch, vocab_size) | ||||||
|  |         logits = logits[:, -1, :] | ||||||
|  | 
 | ||||||
|  |         # Get the idx of the vocab entry with the highest logits value | ||||||
|  |         idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1) | ||||||
|  | 
 | ||||||
|  |         # Append sampled index to the running sequence | ||||||
|  |         idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1) | ||||||
|  | 
 | ||||||
|  |     return idx | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | ##################################### | ||||||
|  | # Chapter 5 | ||||||
|  | ##################################### | ||||||
|  | def assign(left, right): | ||||||
|  |     if left.shape != right.shape: | ||||||
|  |         raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}") | ||||||
|  |     return torch.nn.Parameter(torch.tensor(right)) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def load_weights_into_gpt(gpt, params): | ||||||
|  |     gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe']) | ||||||
|  |     gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte']) | ||||||
|  | 
 | ||||||
|  |     for b in range(len(params["blocks"])): | ||||||
|  |         q_w, k_w, v_w = np.split( | ||||||
|  |             (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1) | ||||||
|  |         gpt.trf_blocks[b].att.W_query.weight = assign( | ||||||
|  |             gpt.trf_blocks[b].att.W_query.weight, q_w.T) | ||||||
|  |         gpt.trf_blocks[b].att.W_key.weight = assign( | ||||||
|  |             gpt.trf_blocks[b].att.W_key.weight, k_w.T) | ||||||
|  |         gpt.trf_blocks[b].att.W_value.weight = assign( | ||||||
|  |             gpt.trf_blocks[b].att.W_value.weight, v_w.T) | ||||||
|  | 
 | ||||||
|  |         q_b, k_b, v_b = np.split( | ||||||
|  |             (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1) | ||||||
|  |         gpt.trf_blocks[b].att.W_query.bias = assign( | ||||||
|  |             gpt.trf_blocks[b].att.W_query.bias, q_b) | ||||||
|  |         gpt.trf_blocks[b].att.W_key.bias = assign( | ||||||
|  |             gpt.trf_blocks[b].att.W_key.bias, k_b) | ||||||
|  |         gpt.trf_blocks[b].att.W_value.bias = assign( | ||||||
|  |             gpt.trf_blocks[b].att.W_value.bias, v_b) | ||||||
|  | 
 | ||||||
|  |         gpt.trf_blocks[b].att.out_proj.weight = assign( | ||||||
|  |             gpt.trf_blocks[b].att.out_proj.weight, | ||||||
|  |             params["blocks"][b]["attn"]["c_proj"]["w"].T) | ||||||
|  |         gpt.trf_blocks[b].att.out_proj.bias = assign( | ||||||
|  |             gpt.trf_blocks[b].att.out_proj.bias, | ||||||
|  |             params["blocks"][b]["attn"]["c_proj"]["b"]) | ||||||
|  | 
 | ||||||
|  |         gpt.trf_blocks[b].ff.layers[0].weight = assign( | ||||||
|  |             gpt.trf_blocks[b].ff.layers[0].weight, | ||||||
|  |             params["blocks"][b]["mlp"]["c_fc"]["w"].T) | ||||||
|  |         gpt.trf_blocks[b].ff.layers[0].bias = assign( | ||||||
|  |             gpt.trf_blocks[b].ff.layers[0].bias, | ||||||
|  |             params["blocks"][b]["mlp"]["c_fc"]["b"]) | ||||||
|  |         gpt.trf_blocks[b].ff.layers[2].weight = assign( | ||||||
|  |             gpt.trf_blocks[b].ff.layers[2].weight, | ||||||
|  |             params["blocks"][b]["mlp"]["c_proj"]["w"].T) | ||||||
|  |         gpt.trf_blocks[b].ff.layers[2].bias = assign( | ||||||
|  |             gpt.trf_blocks[b].ff.layers[2].bias, | ||||||
|  |             params["blocks"][b]["mlp"]["c_proj"]["b"]) | ||||||
|  | 
 | ||||||
|  |         gpt.trf_blocks[b].norm1.scale = assign( | ||||||
|  |             gpt.trf_blocks[b].norm1.scale, | ||||||
|  |             params["blocks"][b]["ln_1"]["g"]) | ||||||
|  |         gpt.trf_blocks[b].norm1.shift = assign( | ||||||
|  |             gpt.trf_blocks[b].norm1.shift, | ||||||
|  |             params["blocks"][b]["ln_1"]["b"]) | ||||||
|  |         gpt.trf_blocks[b].norm2.scale = assign( | ||||||
|  |             gpt.trf_blocks[b].norm2.scale, | ||||||
|  |             params["blocks"][b]["ln_2"]["g"]) | ||||||
|  |         gpt.trf_blocks[b].norm2.shift = assign( | ||||||
|  |             gpt.trf_blocks[b].norm2.shift, | ||||||
|  |             params["blocks"][b]["ln_2"]["b"]) | ||||||
|  | 
 | ||||||
|  |     gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"]) | ||||||
|  |     gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"]) | ||||||
|  |     gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"]) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None): | ||||||
|  |     # For-loop is the same as before: Get logits, and only focus on last time step | ||||||
|  |     for _ in range(max_new_tokens): | ||||||
|  |         idx_cond = idx[:, -context_size:] | ||||||
|  |         with torch.no_grad(): | ||||||
|  |             logits = model(idx_cond) | ||||||
|  |         logits = logits[:, -1, :] | ||||||
|  | 
 | ||||||
|  |         # New: Filter logits with top_k sampling | ||||||
|  |         if top_k is not None: | ||||||
|  |             # Keep only top_k values | ||||||
|  |             top_logits, _ = torch.topk(logits, top_k) | ||||||
|  |             min_val = top_logits[:, -1] | ||||||
|  |             logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits) | ||||||
|  | 
 | ||||||
|  |         # New: Apply temperature scaling | ||||||
|  |         if temperature > 0.0: | ||||||
|  |             logits = logits / temperature | ||||||
|  | 
 | ||||||
|  |             # Apply softmax to get probabilities | ||||||
|  |             probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len) | ||||||
|  | 
 | ||||||
|  |             # Sample from the distribution | ||||||
|  |             idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1) | ||||||
|  | 
 | ||||||
|  |         # Otherwise same as before: get idx of the vocab entry with the highest logits value | ||||||
|  |         else: | ||||||
|  |             idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1) | ||||||
|  | 
 | ||||||
|  |         # Same as before: append sampled index to the running sequence | ||||||
|  |         idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1) | ||||||
|  | 
 | ||||||
|  |     return idx | ||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Sebastian Raschka
						Sebastian Raschka