From fd24a3679a13ecf0fbb0648b53bf033e3d7c4161 Mon Sep 17 00:00:00 2001 From: Sebastian Raschka Date: Wed, 29 Jan 2025 08:15:29 -0600 Subject: [PATCH] Alternative weight loading via .safetensors (#507) --- .gitignore | 1 + ch05/01_main-chapter-code/ch05.ipynb | 17 +- ch05/01_main-chapter-code/gpt_generate.py | 6 +- ch05/02_alternative_weight_loading/README.md | 2 + .../weight-loading-hf-safetensors.ipynb | 314 ++++++++++++++++++ .../weight-loading-hf-transformers.ipynb | 2 +- 6 files changed, 336 insertions(+), 6 deletions(-) create mode 100644 ch05/02_alternative_weight_loading/weight-loading-hf-safetensors.ipynb diff --git a/.gitignore b/.gitignore index 2656934..bd9c2f8 100644 --- a/.gitignore +++ b/.gitignore @@ -31,6 +31,7 @@ appendix-E/01_main-chapter-code/gpt2 ch05/01_main-chapter-code/gpt2/ ch05/02_alternative_weight_loading/checkpoints +ch05/02_alternative_weight_loading/*.safetensors ch05/01_main-chapter-code/model.pth ch05/01_main-chapter-code/model_and_optimizer.pth ch05/03_bonus_pretraining_on_gutenberg/model_checkpoints diff --git a/ch05/01_main-chapter-code/ch05.ipynb b/ch05/01_main-chapter-code/ch05.ipynb index de627c3..b1f4ee2 100644 --- a/ch05/01_main-chapter-code/ch05.ipynb +++ b/ch05/01_main-chapter-code/ch05.ipynb @@ -2103,7 +2103,20 @@ "id": "127ddbdb-3878-4669-9a39-d231fbdfb834", "metadata": {}, "source": [ - "- For an alternative way to load the weights from the Hugging Face Hub, see [../02_alternative_weight_loading](../02_alternative_weight_loading)" + "\n", + " \n", + "\n" ] }, { @@ -2505,7 +2518,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6" + "version": "3.11.4" } }, "nbformat": 4, diff --git a/ch05/01_main-chapter-code/gpt_generate.py b/ch05/01_main-chapter-code/gpt_generate.py index 92c0010..4e49ccd 100644 --- a/ch05/01_main-chapter-code/gpt_generate.py +++ b/ch05/01_main-chapter-code/gpt_generate.py @@ -155,8 +155,8 @@ def assign(left, right): def load_weights_into_gpt(gpt, params): - gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe']) - gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte']) + gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params["wpe"]) + gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params["wte"]) for b in range(len(params["blocks"])): q_w, k_w, v_w = np.split( @@ -229,7 +229,7 @@ def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=No # Keep only top_k values top_logits, _ = torch.topk(logits, top_k) min_val = top_logits[:, -1] - logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits) + logits = torch.where(logits < min_val, torch.tensor(float("-inf")).to(logits.device), logits) # New: Apply temperature scaling if temperature > 0.0: diff --git a/ch05/02_alternative_weight_loading/README.md b/ch05/02_alternative_weight_loading/README.md index c2056e9..7eb4e7b 100644 --- a/ch05/02_alternative_weight_loading/README.md +++ b/ch05/02_alternative_weight_loading/README.md @@ -3,3 +3,5 @@ This folder contains alternative weight loading strategies in case the weights become unavailable from OpenAI. - [weight-loading-hf-transformers.ipynb](weight-loading-hf-transformers.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `transformers` library + +- [weight-loading-hf-safetensors.ipynb](weight-loading-hf-safetensors.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `safetensors` library directly (skipping the instantiation of a Hugging Face transformer model) \ No newline at end of file diff --git a/ch05/02_alternative_weight_loading/weight-loading-hf-safetensors.ipynb b/ch05/02_alternative_weight_loading/weight-loading-hf-safetensors.ipynb new file mode 100644 index 0000000..91a1020 --- /dev/null +++ b/ch05/02_alternative_weight_loading/weight-loading-hf-safetensors.ipynb @@ -0,0 +1,314 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6d6bc54f-2b16-4b0f-be69-957eed5d112f", + "metadata": {}, + "source": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "
\n", + "\n", + "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka
\n", + "
Code repository: https://github.com/rasbt/LLMs-from-scratch\n", + "
\n", + "
\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "72953590-5363-4398-85ce-54bde07f3d8a", + "metadata": {}, + "source": [ + "# Bonus Code for Chapter 5" + ] + }, + { + "cell_type": "markdown", + "id": "1a4ab5ee-e7b9-45d3-a82b-a12bcfc0945a", + "metadata": {}, + "source": [ + "## Alternative Weight Loading from Hugging Face Model Hub Via `safetensors`" + ] + }, + { + "cell_type": "markdown", + "id": "b2feea87-49f0-48b9-b925-b8f0dda4096f", + "metadata": {}, + "source": [ + "- In the main chapter, we loaded the GPT model weights directly from OpenAI\n", + "- This notebook provides alternative weight loading code to load the model weights from the [Hugging Face Model Hub](https://huggingface.co/docs/hub/en/models-the-hub) using `.safetensors` files\n", + "- This is conceptually the same as loading weights of a PyTorch model from via the state-dict method described in chapter 5:\n", + "\n", + "```python\n", + "state_dict = torch.load(\"model_state_dict.pth\")\n", + "model.load_state_dict(state_dict) \n", + "```\n", + "\n", + "- The appeal of `.safetensors` files lies in their secure design, as they only store tensor data and avoid the execution of potentially malicious code during loading\n", + "- In newer versions of PyTorch (e.g., 2.0 and newer), a `weights_only=True` argument can be used with `torch.load` (e.g., `torch.load(\"model_state_dict.pth\", weights_only=True)`) to improve safety by skipping the execution of code and loading only the weights (this is now enabled by default in PyTorch 2.6 and newer)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "99b77109-5215-4d07-a618-4d10eff1a488", + "metadata": {}, + "outputs": [], + "source": [ + "# pip install safetensors" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b0467eff-b43c-4a38-93e8-5ed87a5fc2b1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numpy version: 1.26.4\n", + "torch version: 2.5.1\n", + "safetensors version: 0.4.4\n" + ] + } + ], + "source": [ + "from importlib.metadata import version\n", + "\n", + "pkgs = [\"numpy\", \"torch\", \"safetensors\"]\n", + "for p in pkgs:\n", + " print(f\"{p} version: {version(p)}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "d1cb0023-8a47-4b1a-9bde-54ab7eac476b", + "metadata": {}, + "outputs": [], + "source": [ + "from previous_chapters import GPTModel, generate_text_simple" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9ea9b1bc-7881-46ad-9555-27a9cf23faa7", + "metadata": {}, + "outputs": [], + "source": [ + "BASE_CONFIG = {\n", + " \"vocab_size\": 50257, # Vocabulary size\n", + " \"context_length\": 1024, # Context length\n", + " \"drop_rate\": 0.0, # Dropout rate\n", + " \"qkv_bias\": True # Query-key-value bias\n", + "}\n", + "\n", + "model_configs = {\n", + " \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n", + " \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n", + " \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n", + " \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n", + "}\n", + "\n", + "\n", + "CHOOSE_MODEL = \"gpt2-small (124M)\"\n", + "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e7b22375-6fac-4e90-9063-daa4de86c778", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import urllib.request\n", + "from safetensors.torch import load_file\n", + "\n", + "URL_DIR = {\n", + " \"gpt2-small (124M)\": \"gpt2\", # works ok\n", + " \"gpt2-medium (355M)\": \"gpt2-medium\", # this file seems to have issues via `generate`\n", + " \"gpt2-large (774M)\": \"gpt2-large\", # works ok\n", + " \"gpt2-xl (1558M)\": \"gpt2-xl\" # works ok\n", + "}\n", + "\n", + "url = f\"https://huggingface.co/openai-community/{URL_DIR[CHOOSE_MODEL]}/resolve/main/model.safetensors\"\n", + "output_file = f\"model-{URL_DIR[CHOOSE_MODEL]}.safetensors\"\n", + "\n", + "# Download file\n", + "if not os.path.exists(output_file):\n", + " urllib.request.urlretrieve(url, output_file)\n", + "\n", + "# Load file\n", + "state_dict = load_file(output_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4e2a4cf4-a54e-4307-9141-fb9f288e4dfa", + "metadata": {}, + "outputs": [], + "source": [ + "def assign(left, right):\n", + " if left.shape != right.shape:\n", + " raise ValueError(f\"Shape mismatch. Left: {left.shape}, Right: {right.shape}\")\n", + " return torch.nn.Parameter(right.detach())" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "75be3077-f141-44bb-af88-62580ffd224c", + "metadata": {}, + "outputs": [], + "source": [ + "def load_weights_into_gpt(gpt, params):\n", + " gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params[\"wpe.weight\"])\n", + " gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params[\"wte.weight\"])\n", + "\n", + " for b in range(len(gpt.trf_blocks)):\n", + " q_w, k_w, v_w = torch.chunk(\n", + " params[f\"h.{b}.attn.c_attn.weight\"], 3, axis=-1)\n", + " gpt.trf_blocks[b].att.W_query.weight = assign(\n", + " gpt.trf_blocks[b].att.W_query.weight, q_w.T)\n", + " gpt.trf_blocks[b].att.W_key.weight = assign(\n", + " gpt.trf_blocks[b].att.W_key.weight, k_w.T)\n", + " gpt.trf_blocks[b].att.W_value.weight = assign(\n", + " gpt.trf_blocks[b].att.W_value.weight, v_w.T)\n", + "\n", + " q_b, k_b, v_b = torch.chunk(\n", + " params[f\"h.{b}.attn.c_attn.bias\"], 3, axis=-1)\n", + " gpt.trf_blocks[b].att.W_query.bias = assign(\n", + " gpt.trf_blocks[b].att.W_query.bias, q_b)\n", + " gpt.trf_blocks[b].att.W_key.bias = assign(\n", + " gpt.trf_blocks[b].att.W_key.bias, k_b)\n", + " gpt.trf_blocks[b].att.W_value.bias = assign(\n", + " gpt.trf_blocks[b].att.W_value.bias, v_b)\n", + "\n", + " gpt.trf_blocks[b].att.out_proj.weight = assign(\n", + " gpt.trf_blocks[b].att.out_proj.weight,\n", + " params[f\"h.{b}.attn.c_proj.weight\"].T)\n", + " gpt.trf_blocks[b].att.out_proj.bias = assign(\n", + " gpt.trf_blocks[b].att.out_proj.bias,\n", + " params[f\"h.{b}.attn.c_proj.bias\"])\n", + "\n", + " gpt.trf_blocks[b].ff.layers[0].weight = assign(\n", + " gpt.trf_blocks[b].ff.layers[0].weight,\n", + " params[f\"h.{b}.mlp.c_fc.weight\"].T)\n", + " gpt.trf_blocks[b].ff.layers[0].bias = assign(\n", + " gpt.trf_blocks[b].ff.layers[0].bias,\n", + " params[f\"h.{b}.mlp.c_fc.bias\"])\n", + " gpt.trf_blocks[b].ff.layers[2].weight = assign(\n", + " gpt.trf_blocks[b].ff.layers[2].weight,\n", + " params[f\"h.{b}.mlp.c_proj.weight\"].T)\n", + " gpt.trf_blocks[b].ff.layers[2].bias = assign(\n", + " gpt.trf_blocks[b].ff.layers[2].bias,\n", + " params[f\"h.{b}.mlp.c_proj.bias\"])\n", + "\n", + " gpt.trf_blocks[b].norm1.scale = assign(\n", + " gpt.trf_blocks[b].norm1.scale,\n", + " params[f\"h.{b}.ln_1.weight\"])\n", + " gpt.trf_blocks[b].norm1.shift = assign(\n", + " gpt.trf_blocks[b].norm1.shift,\n", + " params[f\"h.{b}.ln_1.bias\"])\n", + " gpt.trf_blocks[b].norm2.scale = assign(\n", + " gpt.trf_blocks[b].norm2.scale,\n", + " params[f\"h.{b}.ln_2.weight\"])\n", + " gpt.trf_blocks[b].norm2.shift = assign(\n", + " gpt.trf_blocks[b].norm2.shift,\n", + " params[f\"h.{b}.ln_2.bias\"])\n", + "\n", + " gpt.final_norm.scale = assign(gpt.final_norm.scale, params[\"ln_f.weight\"])\n", + " gpt.final_norm.shift = assign(gpt.final_norm.shift, params[\"ln_f.bias\"])\n", + " gpt.out_head.weight = assign(gpt.out_head.weight, params[\"wte.weight\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cda44d37-92c0-4c19-a70a-15711513afce", + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "from previous_chapters import GPTModel\n", + "\n", + "\n", + "gpt = GPTModel(BASE_CONFIG)\n", + "\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "load_weights_into_gpt(gpt, state_dict)\n", + "gpt.to(device);" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "4ddd0d51-3ade-4890-9bab-d63f141d095f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output text:\n", + " Every effort moves forward, but it's not enough.\n", + "\n", + "\"I'm not going to sit here and say, 'I'm not going to do this,'\n" + ] + } + ], + "source": [ + "import tiktoken\n", + "from previous_chapters import generate, text_to_token_ids, token_ids_to_text\n", + "\n", + "torch.manual_seed(123)\n", + "\n", + "tokenizer = tiktoken.get_encoding(\"gpt2\")\n", + "\n", + "token_ids = generate(\n", + " model=gpt.to(device),\n", + " idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n", + " max_new_tokens=30,\n", + " context_size=BASE_CONFIG[\"context_length\"],\n", + " top_k=1,\n", + " temperature=1.0\n", + ")\n", + "\n", + "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb b/ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb index 0f92a87..f267baf 100644 --- a/ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb +++ b/ch05/02_alternative_weight_loading/weight-loading-hf-transformers.ipynb @@ -293,7 +293,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.11" + "version": "3.11.4" } }, "nbformat": 4,