Merge pull request #182 from rasbt/refine-duplicate-search

Refine duplicate search utility function
This commit is contained in:
Sebastian Raschka 2024-05-26 16:19:17 -04:00 committed by GitHub
commit ffe8bb7489
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 89 additions and 37 deletions

View File

@ -11,8 +11,8 @@ pip install -r requirements-extra.txt
 
## Finding Near-duplicates
### Finding Near Duplicates
The `find-near-duplicates.py` function can be used to identify duplicates and near-duplicates in an instruction dataset. For example,
@ -29,11 +29,7 @@ scikit-learn version: 1.3.1
==================================================
Searching 'instruction' for duplicates ...
==================================================
Duplicate pair found with similarity 0.85:
1. Determine the state of matter for helium at room temperature.
2. Determine the state of matter for nitrogen at room temperature.
Duplicate pair found with similarity 0.98:
Duplicate pair found with similarity 0.94:
1. Edit the following sentence to make it more formal.
2. Edit the sentence to make it more formal.
@ -41,7 +37,7 @@ Duplicate pair found with similarity 1.00:
1. Name a dwarf planet in our solar system.
2. Name a dwarf planet in our solar system.
Duplicate pair found with similarity 0.88:
Duplicate pair found with similarity 0.91:
1. Change the sentences from active voice to passive voice.
2. Change the sentence from passive to active voice.
@ -50,19 +46,12 @@ Duplicate pair found with similarity 0.88:
==================================================
Searching 'input' for duplicates ...
==================================================
Duplicate pair found with similarity 0.88:
1.
2. She said, "I am tired."
No duplicates found
==================================================
Searching 'output' for duplicates ...
==================================================
Duplicate pair found with similarity 0.82:
1. Helium is in a gaseous state at room temperature.
2. Nitrogen is in a gaseous state at room temperature.
Duplicate pair found with similarity 1.00:
1. One dwarf planet in our solar system is Pluto.
2. One dwarf planet in our solar system is Pluto.
@ -70,6 +59,11 @@ Duplicate pair found with similarity 1.00:
```
 
You can use the `--threshold` setting with a value between 0 and 1 to decrease or increase the sensitivity.
The default threshold is 0.9.
 
## Creating Passive Voice Entries

View File

@ -6,6 +6,7 @@
import argparse
import json
import re
from sklearn import __version__ as sklearn_version
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
@ -29,18 +30,27 @@ example_data = [
]
def find_near_duplicates(json_data, threshold=0.8, key="instruction"):
def preprocess_text(text):
# Lowercase the text
text = text.lower()
# Remove punctuation
text = re.sub(r'[^\w\s]', '', text)
return text
def find_near_duplicates(json_data, threshold=0.75, key="instruction"):
"""The higher the threshold, the more similar the texts have to be to match"""
# Extract instructions
text = [item[key] for item in json_data if item[key]]
text = [preprocess_text(item[key]) for item in json_data if item[key]]
near_duplicates = []
indices_to_remove = set()
if not text:
return near_duplicates
return {}, near_duplicates
# Vectorize the text data
vectorizer = TfidfVectorizer(stop_words=None)
vectorizer = TfidfVectorizer(stop_words=None, analyzer='char', ngram_range=(1, 3))
tfidf_matrix = vectorizer.fit_transform(text)
# Compute cosine similarity between each pair of entries
@ -51,18 +61,29 @@ def find_near_duplicates(json_data, threshold=0.8, key="instruction"):
for i in range(len(cos_sim_matrix)):
for j in range(i+1, len(cos_sim_matrix)):
if cos_sim_matrix[i, j] > threshold:
if len(json_data[i][key]) <= 1 or len(json_data[j][key]) <= 1:
continue
near_duplicates.append((json_data[i], json_data[j], cos_sim_matrix[i, j]))
if key in ("input", "output"): # Don't remove duplicates based on the instruction
indices_to_remove.add(j) # Mark the second entry for removal
return near_duplicates
# Remove the near-duplicate entries
filtered_json_data = [item for index, item in enumerate(json_data) if index not in indices_to_remove]
return filtered_json_data, near_duplicates
def find_and_print_new_duplicates(json_data):
def find_print_and_remove_near_duplicates(json_data, remove_duplicates=False, threshold=0.75):
"""
Searches each key in the first JSON object for duplicates across a list of JSON objects.
Prints the duplicates if found.
"""
for key in json_data[0].keys():
near_duplicates = find_near_duplicates(json_data, key=key)
if remove_duplicates:
json_data, near_duplicates = find_near_duplicates(json_data, key=key, threshold=threshold)
else:
_, near_duplicates = find_near_duplicates(json_data, key=key, threshold=threshold)
separator = 50 * '='
print(f"\n\n{separator}\nSearching '{key}' for duplicates ...\n{separator}")
if not near_duplicates:
@ -73,6 +94,7 @@ def find_and_print_new_duplicates(json_data):
f"Duplicate pair found with similarity {dup[2]:.2f}:\n"
f"1. {dup[0][key]}\n2. {dup[1][key]}\n"
)
return json_data
if __name__ == "__main__":
@ -84,7 +106,35 @@ if __name__ == "__main__":
type=str,
help=("Path to the dataset JSON file")
)
parser.add_argument(
"--threshold",
type=float,
default=0.9,
help=("A sensitivity threshold between 0 and 1 where 1 is strictest")
)
parser.add_argument(
"--remove_duplicates",
action='store_true',
default=False,
help=(
"Removes duplicates based on the 'input' or 'output' keys "
" (but not the 'instruction') and saves the cleaned JSON file as --json_output_file"
)
)
parser.add_argument(
"--json_output_file",
type=str,
help=("Path to the dataset JSON file")
)
args = parser.parse_args()
if args.remove_duplicates and not args.json_output_file:
raise ValueError(
"Provide an output file via --json_output_file "
"to save the cleaned JSON data."
)
if not args.json_file:
json_data = example_data
@ -92,4 +142,12 @@ if __name__ == "__main__":
with open(args.json_file, "r") as file:
json_data = json.load(file)
find_and_print_new_duplicates(json_data)
json_data = find_print_and_remove_near_duplicates(
json_data=json_data,
remove_duplicates=args.remove_duplicates,
threshold=args.threshold
)
if args.remove_duplicates:
with open(args.json_output_file, "w") as file:
json.dump(json_data, file, indent=4)