# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch # # A minimal instruction finetuning file based on the code in chapter 7 from functools import partial from importlib.metadata import version import json import os import re import time import urllib import matplotlib.pyplot as plt import tiktoken import torch from torch.utils.data import Dataset, DataLoader from tqdm import tqdm # Import from local files in this folder from gpt_download import download_and_load_gpt2 from previous_chapters import ( calc_loss_loader, generate, GPTModel, load_weights_into_gpt, text_to_token_ids, train_model_simple, token_ids_to_text ) class InstructionDataset(Dataset): def __init__(self, data, tokenizer): self.data = data # Pre-tokenize texts self.encoded_texts = [] for entry in data: instruction_plus_input = format_input(entry) response_text = f"\n\n### Response:\n{entry['output']}" full_text = instruction_plus_input + response_text self.encoded_texts.append( tokenizer.encode(full_text) ) def __getitem__(self, index): return self.encoded_texts[index] def __len__(self): return len(self.data) def custom_collate_fn( batch, pad_token_id=50256, ignore_index=-100, allowed_max_length=None, device="cpu" ): # Find the longest sequence in the batch batch_max_length = max(len(item)+1 for item in batch) # Pad and prepare inputs and targets inputs_lst, targets_lst = [], [] for item in batch: new_item = item.copy() # Add an <|endoftext|> token new_item += [pad_token_id] # Pad sequences to max_length padded = new_item + [pad_token_id] * (batch_max_length - len(new_item)) inputs = torch.tensor(padded[:-1]) # Truncate the last token for inputs targets = torch.tensor(padded[1:]) # Shift +1 to the right for targets # New: Replace all but the first padding tokens in targets by ignore_index mask = targets == pad_token_id indices = torch.nonzero(mask).squeeze() if indices.numel() > 1: targets[indices[1:]] = ignore_index # New: Optionally truncate to maximum sequence length if allowed_max_length is not None: inputs = inputs[:allowed_max_length] targets = targets[:allowed_max_length] inputs_lst.append(inputs) targets_lst.append(targets) # Convert list of inputs and targets to tensors and transfer to target device inputs_tensor = torch.stack(inputs_lst).to(device) targets_tensor = torch.stack(targets_lst).to(device) return inputs_tensor, targets_tensor def download_and_load_file(file_path, url): if not os.path.exists(file_path): with urllib.request.urlopen(url) as response: text_data = response.read().decode("utf-8") with open(file_path, "w", encoding="utf-8") as file: file.write(text_data) with open(file_path, "r") as file: data = json.load(file) return data def format_input(entry): instruction_text = ( f"Below is an instruction that describes a task. " f"Write a response that appropriately completes the request." f"\n\n### Instruction:\n{entry['instruction']}" ) input_text = f"\n\n### Input:\n{entry['input']}" if entry["input"] else "" return instruction_text + input_text def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses): fig, ax1 = plt.subplots(figsize=(12, 6)) # Plot training and validation loss against epochs ax1.plot(epochs_seen, train_losses, label="Training loss") ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss") ax1.set_xlabel("Epochs") ax1.set_ylabel("Loss") ax1.legend(loc="upper right") # Create a second x-axis for tokens seen ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks ax2.set_xlabel("Tokens seen") fig.tight_layout() # Adjust layout to make room plot_name = "loss-plot-standalone.pdf" print(f"Plot saved as {plot_name}") plt.savefig(plot_name) # plt.show() def main(test_mode=False): ####################################### # Print package versions ####################################### print() pkgs = [ "matplotlib", # Plotting library "tiktoken", # Tokenizer "torch", # Deep learning library "tqdm", # Progress bar "tensorflow", # For OpenAI's pretrained weights ] for p in pkgs: print(f"{p} version: {version(p)}") print(50*"-") ####################################### # Download and prepare dataset ####################################### file_path = "instruction-data.json" url = "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/main/ch07/01_main-chapter-code/instruction-data.json" data = download_and_load_file(file_path, url) train_portion = int(len(data) * 0.85) # 85% for training test_portion = int(len(data) * 0.1) # 10% for testing train_data = data[:train_portion] test_data = data[train_portion:train_portion + test_portion] val_data = data[train_portion + test_portion:] # Use very small subset for testing purposes if args.test_mode: train_data = train_data[:10] val_data = val_data[:10] test_data = test_data[:10] print("Training set length:", len(train_data)) print("Validation set length:", len(val_data)) print("Test set length:", len(test_data)) print(50*"-") tokenizer = tiktoken.get_encoding("gpt2") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Device:", device) print(50*"-") customized_collate_fn = partial(custom_collate_fn, device=device, allowed_max_length=1024) num_workers = 0 batch_size = 8 torch.manual_seed(123) train_dataset = InstructionDataset(train_data, tokenizer) train_loader = DataLoader( train_dataset, batch_size=batch_size, collate_fn=customized_collate_fn, shuffle=True, drop_last=True, num_workers=num_workers ) val_dataset = InstructionDataset(val_data, tokenizer) val_loader = DataLoader( val_dataset, batch_size=batch_size, collate_fn=customized_collate_fn, shuffle=False, drop_last=False, num_workers=num_workers ) ####################################### # Load pretrained model ####################################### # Small GPT model for testing purposes if args.test_mode: BASE_CONFIG = { "vocab_size": 50257, "context_length": 120, "drop_rate": 0.0, "qkv_bias": False, "emb_dim": 12, "n_layers": 1, "n_heads": 2 } model = GPTModel(BASE_CONFIG) model.eval() device = "cpu" CHOOSE_MODEL = "Small test model" # Code as it is used in the main chapter else: BASE_CONFIG = { "vocab_size": 50257, # Vocabulary size "context_length": 1024, # Context length "drop_rate": 0.0, # Dropout rate "qkv_bias": True # Query-key-value bias } model_configs = { "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12}, "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16}, "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20}, "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25}, } CHOOSE_MODEL = "gpt2-medium (355M)" BASE_CONFIG.update(model_configs[CHOOSE_MODEL]) model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")") settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2") model = GPTModel(BASE_CONFIG) load_weights_into_gpt(model, params) model.eval() model.to(device) print("Loaded model:", CHOOSE_MODEL) print(50*"-") ####################################### # Finetuning the model ####################################### print("Initial losses") with torch.no_grad(): train_loss = calc_loss_loader(train_loader, model, device, num_batches=5) val_loss = calc_loss_loader(val_loader, model, device, num_batches=5) print(" Training loss:", train_loss) print(" Validation loss:", val_loss) start_time = time.time() optimizer = torch.optim.AdamW(model.parameters(), lr=0.00005, weight_decay=0.1) num_epochs = 2 torch.manual_seed(123) train_losses, val_losses, tokens_seen = train_model_simple( model, train_loader, val_loader, optimizer, device, num_epochs=num_epochs, eval_freq=5, eval_iter=5, start_context=format_input(val_data[0]), tokenizer=tokenizer ) end_time = time.time() execution_time_minutes = (end_time - start_time) / 60 print(f"Training completed in {execution_time_minutes:.2f} minutes.") epochs_tensor = torch.linspace(0, num_epochs, len(train_losses)) plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses) print(50*"-") ####################################### # Saving results ####################################### print("Generating responses") for i, entry in tqdm(enumerate(test_data), total=len(test_data)): input_text = format_input(entry) token_ids = generate( model=model, idx=text_to_token_ids(input_text, tokenizer).to(device), max_new_tokens=256, context_size=BASE_CONFIG["context_length"], eos_id=50256 ) generated_text = token_ids_to_text(token_ids, tokenizer) response_text = generated_text[len(input_text):].replace("### Response:", "").strip() test_data[i]["model_response"] = response_text test_data_path = "instruction-data-with-response-standalone.json" with open(test_data_path, "w") as file: json.dump(test_data, file, indent=4) # "indent" for pretty-printing print(f"Responses saved as {test_data_path}") file_name = f"{re.sub(r'[ ()]', '', CHOOSE_MODEL) }-sft-standalone.pth" torch.save(model.state_dict(), file_name) print(f"Model saved as {file_name}") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description="Finetune a GPT model for classification" ) parser.add_argument( "--test_mode", default=False, action="store_true", help=("This flag runs the model in test mode for internal testing purposes. " "Otherwise, it runs the model as it is used in the chapter (recommended).") ) args = parser.parse_args() main(args.test_mode)