{ "cells": [ { "cell_type": "markdown", "id": "1545a16b-bc8d-4e49-b9a6-db6631e7483d", "metadata": {}, "source": [ "\n", "\n", "\n", "\n", "\n", "
\n", "\n", "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka
\n", "
Code repository: https://github.com/rasbt/LLMs-from-scratch\n", "
\n", "
\n", "\n", "
" ] }, { "cell_type": "markdown", "id": "f3f83194-82b9-4478-9550-5ad793467bd0", "metadata": {}, "source": [ "# Load And Use Finetuned Model" ] }, { "cell_type": "markdown", "id": "466b564e-4fd5-4d76-a3a1-63f9f0993b7e", "metadata": {}, "source": [ "This notebook contains minimal code to load the finetuned model that was instruction finetuned and saved in chapter 7 via [ch07.ipynb](ch07.ipynb)." ] }, { "cell_type": "code", "execution_count": 1, "id": "fd80e5f5-0f79-4a6c-bf31-2026e7d30e52", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tiktoken version: 0.7.0\n", "torch version: 2.4.0\n" ] } ], "source": [ "from importlib.metadata import version\n", "\n", "pkgs = [\n", " \"tiktoken\", # Tokenizer\n", " \"torch\", # Deep learning library\n", "]\n", "for p in pkgs:\n", " print(f\"{p} version: {version(p)}\")" ] }, { "cell_type": "code", "execution_count": 2, "id": "ed86d6b7-f32d-4601-b585-a2ea3dbf7201", "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "\n", "finetuned_model_path = Path(\"gpt2-medium355M-sft.pth\")\n", "if not finetuned_model_path.exists():\n", " print(\n", " f\"Could not find '{finetuned_model_path}'.\\n\"\n", " \"Run the `ch07.ipynb` notebook to finetune and save the finetuned model.\"\n", " )" ] }, { "cell_type": "code", "execution_count": 3, "id": "fb02584a-5e31-45d5-8377-794876907bc6", "metadata": {}, "outputs": [], "source": [ "from previous_chapters import GPTModel\n", "\n", "\n", "BASE_CONFIG = {\n", " \"vocab_size\": 50257, # Vocabulary size\n", " \"context_length\": 1024, # Context length\n", " \"drop_rate\": 0.0, # Dropout rate\n", " \"qkv_bias\": True # Query-key-value bias\n", "}\n", "\n", "model_configs = {\n", " \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n", " \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n", " \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n", " \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n", "}\n", "\n", "CHOOSE_MODEL = \"gpt2-medium (355M)\"\n", "\n", "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])\n", "\n", "model_size = CHOOSE_MODEL.split(\" \")[-1].lstrip(\"(\").rstrip(\")\")\n", "model = GPTModel(BASE_CONFIG)" ] }, { "cell_type": "code", "execution_count": 4, "id": "f1ccf2b7-176e-4cfd-af7a-53fb76010b94", "metadata": {}, "outputs": [], "source": [ "import torch\n", "\n", "model.load_state_dict(torch.load(\n", " \"gpt2-medium355M-sft.pth\",\n", " map_location=torch.device(\"cpu\"),\n", " weights_only=True\n", "))\n", "model.eval();" ] }, { "cell_type": "code", "execution_count": 5, "id": "a1fd174e-9555-46c5-8780-19b0aa4f26e5", "metadata": {}, "outputs": [], "source": [ "import tiktoken\n", "\n", "tokenizer = tiktoken.get_encoding(\"gpt2\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "2a4c0129-efe5-46e9-bb90-ba08d407c1a2", "metadata": {}, "outputs": [], "source": [ "prompt = \"\"\"Below is an instruction that describes a task. Write a response \n", "that appropriately completes the request.\n", "\n", "### Instruction:\n", "Convert the active sentence to passive: 'The chef cooks the meal every day.'\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": 7, "id": "1e26862c-10b5-4a0f-9dd6-b6ddbad2fc3f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The meal is cooked every day by the chef.\n" ] } ], "source": [ "from previous_chapters import (\n", " generate,\n", " text_to_token_ids,\n", " token_ids_to_text\n", ")\n", "\n", "def extract_response(response_text, input_text):\n", " return response_text[len(input_text):].replace(\"### Response:\", \"\").strip()\n", "\n", "torch.manual_seed(123)\n", "\n", "token_ids = generate(\n", " model=model,\n", " idx=text_to_token_ids(prompt, tokenizer),\n", " max_new_tokens=35,\n", " context_size=BASE_CONFIG[\"context_length\"],\n", " eos_id=50256\n", ")\n", "\n", "response = token_ids_to_text(token_ids, tokenizer)\n", "response = extract_response(response, prompt)\n", "print(response)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 5 }