# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import os import time import urllib.request import matplotlib.pyplot as plt import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import tiktoken # NEW imports (see Appendix A): import platform from torch.utils.data.distributed import DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed import init_process_group, destroy_process_group # NEW: function to initialize a distributed process group (1 process / GPU) # this allows communication among processes # (see Appendix A): def ddp_setup(rank, world_size): """ Arguments: rank: a unique process ID world_size: total number of processes in the group """ # Only set MASTER_ADDR and MASTER_PORT if not already defined by torchrun if "MASTER_ADDR" not in os.environ: os.environ["MASTER_ADDR"] = "localhost" if "MASTER_PORT" not in os.environ: os.environ["MASTER_PORT"] = "12345" # initialize process group if platform.system() == "Windows": # Disable libuv because PyTorch for Windows isn't built with support os.environ["USE_LIBUV"] = "0" # Windows users may have to use "gloo" instead of "nccl" as backend # gloo: Facebook Collective Communication Library init_process_group(backend="gloo", rank=rank, world_size=world_size) else: # nccl: NVIDIA Collective Communication Library init_process_group(backend="nccl", rank=rank, world_size=world_size) torch.cuda.set_device(rank) ##################################### # Chapter 2 ##################################### class GPTDatasetV1(Dataset): def __init__(self, txt, tokenizer, max_length, stride): self.input_ids = [] self.target_ids = [] # Tokenize the entire text token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"}) # Use a sliding window to chunk the book into overlapping sequences of max_length for i in range(0, len(token_ids) - max_length, stride): input_chunk = token_ids[i:i + max_length] target_chunk = token_ids[i + 1: i + max_length + 1] self.input_ids.append(torch.tensor(input_chunk)) self.target_ids.append(torch.tensor(target_chunk)) def __len__(self): return len(self.input_ids) def __getitem__(self, idx): return self.input_ids[idx], self.target_ids[idx] # NEW: Modify to set shuffle=False and use a sampler # (See Appendix A): def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, drop_last=True, num_workers=0): # Initialize the tokenizer tokenizer = tiktoken.get_encoding("gpt2") # Create dataset dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) # Create dataloader dataloader = DataLoader( dataset=dataset, batch_size=batch_size, shuffle=False, # NEW: False because of DistributedSampler below drop_last=drop_last, num_workers=num_workers, pin_memory=True, # NEW: chunk batches across GPUs without overlapping samples: sampler=DistributedSampler(dataset) # NEW ) return dataloader ##################################### # Chapter 3 ##################################### class PyTorchMultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, num_heads, dropout=0.0, qkv_bias=False): super().__init__() assert d_out % num_heads == 0, "embed_dim is indivisible by num_heads" self.num_heads = num_heads self.head_dim = d_out // num_heads self.d_out = d_out self.qkv = nn.Linear(d_in, 3 * d_out, bias=qkv_bias) self.proj = nn.Linear(d_out, d_out) self.dropout = dropout def forward(self, x): batch_size, num_tokens, embed_dim = x.shape # (b, num_tokens, embed_dim) --> (b, num_tokens, 3 * embed_dim) qkv = self.qkv(x) # (b, num_tokens, 3 * embed_dim) --> (b, num_tokens, 3, num_heads, head_dim) qkv = qkv.view(batch_size, num_tokens, 3, self.num_heads, self.head_dim) # (b, num_tokens, 3, num_heads, head_dim) --> (3, b, num_heads, num_tokens, head_dim) qkv = qkv.permute(2, 0, 3, 1, 4) # (3, b, num_heads, num_tokens, head_dim) -> 3 times (b, num_heads, num_tokens, head_dim) queries, keys, values = qkv use_dropout = 0. if not self.training else self.dropout context_vec = nn.functional.scaled_dot_product_attention( queries, keys, values, attn_mask=None, dropout_p=use_dropout, is_causal=True) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.transpose(1, 2).contiguous().view(batch_size, num_tokens, self.d_out) context_vec = self.proj(context_vec) return context_vec ##################################### # Chapter 4 ##################################### class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.layers = nn.Sequential( nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), nn.GELU(approximate="tanh"), nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), ) def forward(self, x): return self.layers(x) class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = PyTorchMultiHeadAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"]) self.ff = FeedForward(cfg) self.norm1 = nn.LayerNorm(cfg["emb_dim"]) self.norm2 = nn.LayerNorm(cfg["emb_dim"]) self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) def forward(self, x): # Shortcut connection for attention block shortcut = x x = self.norm1(x) x = self.att(x) # Shape [batch_size, num_tokens, emb_size] x = self.drop_shortcut(x) x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = self.drop_shortcut(x) x = x + shortcut # Add the original input back return x class GPTModel(nn.Module): def __init__(self, cfg): super().__init__() self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) self.drop_emb = nn.Dropout(cfg["drop_rate"]) self.trf_blocks = nn.Sequential( *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) self.final_norm = nn.LayerNorm(cfg["emb_dim"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) def forward(self, in_idx): batch_size, seq_len = in_idx.shape tok_embeds = self.tok_emb(in_idx) pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] x = self.drop_emb(x) x = self.trf_blocks(x) x = self.final_norm(x) logits = self.out_head(x) return logits def generate_text_simple(model, idx, max_new_tokens, context_size): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): # Crop current context if it exceeds the supported context size # E.g., if LLM supports only 5 tokens, and the context size is 10 # then only the last 5 tokens are used as context idx_cond = idx[:, -context_size:] # Get the predictions with torch.no_grad(): logits = model(idx_cond) # Focus only on the last time step # (batch, n_token, vocab_size) becomes (batch, vocab_size) logits = logits[:, -1, :] # Get the idx of the vocab entry with the highest logits value idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) # Append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1) return idx ##################################### # Chapter 5 ##################################### def text_to_token_ids(text, tokenizer): encoded = tokenizer.encode(text) encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension return encoded_tensor def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension return tokenizer.decode(flat.tolist()) def calc_loss_batch(input_batch, target_batch, model, device): input_batch, target_batch = input_batch.to(device), target_batch.to(device) logits = model(input_batch) loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten()) return loss def calc_loss_loader(data_loader, model, device, num_batches=None): total_loss = 0. if len(data_loader) == 0: return float("nan") elif num_batches is None: num_batches = len(data_loader) else: num_batches = min(num_batches, len(data_loader)) for i, (input_batch, target_batch) in enumerate(data_loader): if i < num_batches: loss = calc_loss_batch(input_batch, target_batch, model, device) total_loss += loss.item() else: break return total_loss / num_batches def evaluate_model(model, train_loader, val_loader, device, eval_iter): model.eval() with torch.no_grad(): train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) model.train() return train_loss, val_loss def generate_and_print_sample(model, device, start_context): model.eval() # NEW: Modify for DDP context_size = model.module.pos_emb.weight.shape[0] if isinstance(model, DDP) else model.pos_emb.weight.shape[0] encoded = text_to_token_ids(start_context, tiktoken.get_encoding("gpt2")).to(device) with torch.no_grad(): token_ids = generate_text_simple( model=model, idx=encoded, max_new_tokens=50, context_size=context_size ) decoded_text = token_ids_to_text(token_ids, tiktoken.get_encoding("gpt2")) print(decoded_text.replace("\n", " ")) # Compact print format model.train() def train_model_simple_with_timing(model, train_loader, val_loader, optimizer, device, num_epochs, eval_freq, eval_iter, start_context, tokenizer): train_losses, val_losses, track_tokens = [], [], [] total_tokens, global_step, last_tokens = 0, -1, 0 # NEW: Determine the current rank (default to 0 if not distributed) rank = torch.distributed.get_rank() if torch.distributed.is_initialized() else 0 # world_size = torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1 # Variables for cumulative average tokens/sec cumulative_tokens, cumulative_time = 0.0, 0.0 # CUDA-specific timing setup use_cuda = device.type == "cuda" if use_cuda: t_start = torch.cuda.Event(enable_timing=True) t_end = torch.cuda.Event(enable_timing=True) torch.cuda.synchronize() # Ensure all prior CUDA operations are done t_start.record() # Start the timer for the first interval else: t0 = time.time() # Start the timer for the first interval # Main training loop for epoch in range(num_epochs): # NEW: set epoch for DistributedSampler so each process gets a unique shuffle order if isinstance(train_loader.sampler, DistributedSampler): train_loader.sampler.set_epoch(epoch) model.train() for inp_batch, tgt_batch in train_loader: optimizer.zero_grad() global_step += 1 # Forward and backward pass loss = calc_loss_batch(inp_batch, tgt_batch, model, device) loss.backward() optimizer.step() total_tokens += inp_batch.numel() # At evaluation intervals, measure elapsed time and tokens per second if global_step % eval_freq == 0: # End timing for the current interval if use_cuda: t_end.record() torch.cuda.synchronize() # Wait for all CUDA ops to complete. elapsed = t_start.elapsed_time(t_end) / 1000 # Convert ms to seconds t_start.record() # Reset timer for the next interval else: elapsed = time.time() - t0 t0 = time.time() # Reset timer for the next interval # Calculate local tokens processed during this interval local_interval = total_tokens - last_tokens last_tokens = total_tokens # Aggregate the tokens processed over all devices local_tensor = torch.tensor([local_interval], device=device, dtype=torch.float) global_tensor = local_tensor.clone() torch.distributed.all_reduce(global_tensor, op=torch.distributed.ReduceOp.SUM) global_interval = global_tensor.item() # Global tokens per second for this interval global_tps = global_interval / elapsed if elapsed > 0 else 0 # Update cumulative tokens (local) and aggregate globally cumulative_tokens += local_interval local_cum_tensor = torch.tensor([cumulative_tokens], device=device, dtype=torch.float) global_cum_tensor = local_cum_tensor.clone() torch.distributed.all_reduce(global_cum_tensor, op=torch.distributed.ReduceOp.SUM) global_cumulative_tokens = global_cum_tensor.item() cumulative_time += elapsed global_avg_tps = global_cumulative_tokens / cumulative_time if cumulative_time > 0 else 0 # Evaluate model performance (this may add overhead) train_loss, val_loss = evaluate_model(model, train_loader, val_loader, device, eval_iter) train_losses.append(train_loss) val_losses.append(val_loss) track_tokens.append(total_tokens) # NEW: Only print logs once per GPU (choosing the rank 0 GPU) if rank == 0: print(f"Ep {epoch+1}, Step {global_step:06d}, " f"Train: {train_loss:.3f}, Val: {val_loss:.3f}, " f"Step tok/sec: {round(global_tps)}, Global avg tok/sec: {round(global_avg_tps)}") # NEW Only rank 0 prints the generated sample and memory usage stats if rank == 0 and epoch % 5 == 0: generate_and_print_sample(model, device, start_context) # Memory stats if torch.cuda.is_available(): current_device = torch.cuda.current_device() allocated = torch.cuda.memory_allocated(current_device) / 1024**3 # Convert to GB reserved = torch.cuda.memory_reserved(current_device) / 1024**3 # Convert to GB print(f"\nAllocated memory: {allocated:.4f} GB") print(f"Reserved memory: {reserved:.4f} GB\n") return train_losses, val_losses, track_tokens def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses): fig, ax1 = plt.subplots() # Plot training and validation loss against epochs ax1.plot(epochs_seen, train_losses, label="Training loss") ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss") ax1.set_xlabel("Epochs") ax1.set_ylabel("Loss") ax1.legend(loc="upper right") # Create a second x-axis for tokens seen ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks ax2.set_xlabel("Tokens seen") fig.tight_layout() # Adjust layout to make room # plt.show() ##################################### # Main function calls ##################################### # NEW: Add rank and world_size def main(gpt_config, settings, rank, world_size): ddp_setup(rank, world_size) # NEW: initialize process groups device = torch.device("cuda", rank) torch.manual_seed(123) # NEW: Print info only on 1 GPU if rank == 0: print(f"PyTorch version: {torch.__version__}") if torch.cuda.is_available(): print(f"CUDA version: {torch.version.cuda}") capability = torch.cuda.get_device_capability() if capability[0] >= 7: # Volta (7.0+), Turing (7.5+), Ampere (8.0+), Hopper (9.0+) torch.set_float32_matmul_precision("high") print("Uses tensor cores") else: print("Tensor cores not supported on this GPU. Using default precision.") print() ############################## # Download data if necessary ############################## file_path = "middlemarch.txt" url = "https://www.gutenberg.org/cache/epub/145/pg145.txt" # NEW: Only download 1 time if rank == 0: if not os.path.exists(file_path): with urllib.request.urlopen(url) as response: text_data = response.read().decode('utf-8') with open(file_path, "w", encoding="utf-8") as file: file.write(text_data) # NEW: All processes wait until rank 0 is done, using the GPU index. torch.distributed.barrier(device_ids=[device.index]) with open(file_path, "r", encoding="utf-8") as file: text_data = file.read() ############################## # Initialize model ############################## model = GPTModel(gpt_config) model = torch.compile(model) model = model.to(device) model = model.to(torch.bfloat16) # NEW: Wrap model with DDP model = DDP(model, device_ids=[rank]) optimizer = torch.optim.AdamW( model.parameters(), lr=settings["learning_rate"], weight_decay=settings["weight_decay"], fused=True ) ############################## # Set up dataloaders ############################## # Train/validation ratio train_ratio = 0.90 split_idx = int(train_ratio * len(text_data)) train_loader = create_dataloader_v1( text_data[:split_idx], batch_size=settings["batch_size"], max_length=gpt_config["context_length"], stride=gpt_config["context_length"], drop_last=True, num_workers=4 ) val_loader = create_dataloader_v1( text_data[split_idx:], batch_size=settings["batch_size"], max_length=gpt_config["context_length"], stride=gpt_config["context_length"], drop_last=False, num_workers=4 ) ############################## # Train model ############################## tokenizer = tiktoken.get_encoding("gpt2") train_losses, val_losses, tokens_seen = train_model_simple_with_timing( model=model, train_loader=train_loader, val_loader=val_loader, optimizer=optimizer, device=device, num_epochs=settings["num_epochs"], eval_freq=5, eval_iter=1, start_context="Every effort moves you", tokenizer=tokenizer ) # NEW: Clean up distributed processes destroy_process_group() return train_losses, val_losses, tokens_seen, model if __name__ == "__main__": # NEW: Extract rank and world size from environment variables if "WORLD_SIZE" in os.environ: world_size = int(os.environ["WORLD_SIZE"]) else: world_size = 1 if "LOCAL_RANK" in os.environ: rank = int(os.environ["LOCAL_RANK"]) elif "RANK" in os.environ: rank = int(os.environ["RANK"]) else: rank = 0 GPT_CONFIG_124M = { "vocab_size": 50304, # Vocabulary size "context_length": 1024, # Input tokens per training example "emb_dim": 768, # Embedding dimension "n_heads": 12, # Number of attention heads "n_layers": 12, # Number of layers "drop_rate": 0.1, # Dropout rate "qkv_bias": False # Query-key-value bias } OTHER_SETTINGS = { "learning_rate": 5e-4, # * world_size, # NEW: Increase learning rate to account for multiple GPUs "num_epochs": 50, "batch_size": 32, "weight_decay": 0.1 } ########################### # Initiate training ########################### train_losses, val_losses, tokens_seen, model = main( GPT_CONFIG_124M, OTHER_SETTINGS, rank, world_size # NEW ) ########################### # After training ########################### # NEW: Only create 1 plot if rank == 0: # Plot results epochs_tensor = torch.linspace(0, OTHER_SETTINGS["num_epochs"], len(train_losses)) plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses) plt.savefig("loss.pdf") # Save and load model # # compiled = hasattr(model, "_orig_mod") # if compiled: # torch.save(model._orig_mod.state_dict(), "model.pth") # else: # torch.save(model.state_dict(), "model.pth") # # model = GPTModel(GPT_CONFIG_124M) # model.load_state_dict(torch.load("model.pth", weights_only=True))