{ "cells": [ { "cell_type": "markdown", "id": "51c9672d-8d0c-470d-ac2d-1271f8ec3f14", "metadata": {}, "source": [ "# Chapter 4 Exercise solutions" ] }, { "cell_type": "markdown", "id": "5fea8be3-30a1-4623-a6d7-b095c6c1092e", "metadata": {}, "source": [ "# Exercise 4.1: Parameters in the feed forward versus attention module" ] }, { "cell_type": "code", "execution_count": 1, "id": "2751b0e5-ffd3-4be2-8db3-e20dd4d61d69", "metadata": {}, "outputs": [], "source": [ "from gpt import TransformerBlock\n", "\n", "GPT_CONFIG_124M = {\n", " \"vocab_size\": 50257,\n", " \"ctx_len\": 1024,\n", " \"emb_dim\": 768,\n", " \"n_heads\": 12,\n", " \"n_layers\": 12,\n", " \"drop_rate\": 0.1,\n", " \"qkv_bias\": False\n", "}\n", "\n", "block = TransformerBlock(GPT_CONFIG_124M)" ] }, { "cell_type": "code", "execution_count": 2, "id": "1bcaffd1-0cf6-4f8f-bd53-ab88a37f443e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total number of parameters in feed forward module: 4,722,432\n" ] } ], "source": [ "total_params = sum(p.numel() for p in block.ff.parameters())\n", "print(f\"Total number of parameters in feed forward module: {total_params:,}\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "c1dd06c1-ab6c-4df7-ba73-f9cd54b31138", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total number of parameters in attention module: 2,360,064\n" ] } ], "source": [ "total_params = sum(p.numel() for p in block.att.parameters())\n", "print(f\"Total number of parameters in attention module: {total_params:,}\")" ] }, { "cell_type": "markdown", "id": "15463dec-520a-47b4-b3ad-e180394fd076", "metadata": {}, "source": [ "- The results above are for a single transformer block\n", "- Optionally multiply by 12 to capture all transformer blocks in the 124M GPT model" ] }, { "cell_type": "markdown", "id": "0f7b7c7f-0fa1-4d30-ab44-e499edd55b6d", "metadata": {}, "source": [ "# Exercise 4.2: Initialize larger GPT models" ] }, { "cell_type": "markdown", "id": "310b2e05-3ec8-47fc-afd9-83bf03d4aad8", "metadata": {}, "source": [ "- **GPT2-small** (the 124M configuration we already implemented):\n", " - \"emb_dim\" = 768\n", " - \"n_layers\" = 12\n", " - \"n_heads\" = 12\n", "\n", "- **GPT2-medium:**\n", " - \"emb_dim\" = 1024\n", " - \"n_layers\" = 24\n", " - \"n_heads\" = 16\n", "\n", "- **GPT2-large:**\n", " - \"emb_dim\" = 1280\n", " - \"n_layers\" = 36\n", " - \"n_heads\" = 20\n", "\n", "- **GPT2-XL:**\n", " - \"emb_dim\" = 1600\n", " - \"n_layers\" = 48\n", " - \"n_heads\" = 25" ] }, { "cell_type": "code", "execution_count": 4, "id": "90185dea-81ca-4cdc-aef7-4aaf95cba946", "metadata": {}, "outputs": [], "source": [ "GPT_CONFIG_124M = {\n", " \"vocab_size\": 50257,\n", " \"ctx_len\": 1024,\n", " \"emb_dim\": 768,\n", " \"n_heads\": 12,\n", " \"n_layers\": 12,\n", " \"drop_rate\": 0.1,\n", " \"qkv_bias\": False\n", "}\n", "\n", "\n", "def get_config(base_config, model_name=\"gpt2-small\"):\n", " GPT_CONFIG = base_config.copy()\n", "\n", " if model_name == \"gpt2-small\":\n", " GPT_CONFIG[\"emb_dim\"] = 768\n", " GPT_CONFIG[\"n_layers\"] = 12\n", " GPT_CONFIG[\"n_heads\"] = 12\n", "\n", " elif model_name == \"gpt2-medium\":\n", " GPT_CONFIG[\"emb_dim\"] = 1024\n", " GPT_CONFIG[\"n_layers\"] = 24\n", " GPT_CONFIG[\"n_heads\"] = 16\n", "\n", " elif model_name == \"gpt2-large\":\n", " GPT_CONFIG[\"emb_dim\"] = 1280\n", " GPT_CONFIG[\"n_layers\"] = 36\n", " GPT_CONFIG[\"n_heads\"] = 20\n", "\n", " elif model_name == \"gpt2-xl\":\n", " GPT_CONFIG[\"emb_dim\"] = 1600\n", " GPT_CONFIG[\"n_layers\"] = 48\n", " GPT_CONFIG[\"n_heads\"] = 25\n", "\n", " else:\n", " raise ValueError(f\"Incorrect model name {model_name}\")\n", "\n", " return GPT_CONFIG\n", "\n", "\n", "def calculate_size(model): # based on chapter code\n", " \n", " total_params = sum(p.numel() for p in model.parameters())\n", " print(f\"Total number of parameters: {total_params:,}\")\n", "\n", " total_params_gpt2 = total_params - sum(p.numel() for p in model.out_head.parameters())\n", " print(f\"Number of trainable parameters considering weight tying: {total_params_gpt2:,}\")\n", " \n", " # Calculate the total size in bytes (assuming float32, 4 bytes per parameter)\n", " total_size_bytes = total_params * 4\n", " \n", " # Convert to megabytes\n", " total_size_mb = total_size_bytes / (1024 * 1024)\n", " \n", " print(f\"Total size of the model: {total_size_mb:.2f} MB\")" ] }, { "cell_type": "code", "execution_count": 5, "id": "2587e011-78a4-479c-a8fd-961cc40a5fd4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "gpt2-small:\n", "Total number of parameters: 163,009,536\n", "Number of trainable parameters considering weight tying: 124,412,160\n", "Total size of the model: 621.83 MB\n", "\n", "\n", "gpt2-medium:\n", "Total number of parameters: 406,212,608\n", "Number of trainable parameters considering weight tying: 354,749,440\n", "Total size of the model: 1549.58 MB\n", "\n", "\n", "gpt2-large:\n", "Total number of parameters: 838,220,800\n", "Number of trainable parameters considering weight tying: 773,891,840\n", "Total size of the model: 3197.56 MB\n", "\n", "\n", "gpt2-xl:\n", "Total number of parameters: 1,637,792,000\n", "Number of trainable parameters considering weight tying: 1,557,380,800\n", "Total size of the model: 6247.68 MB\n" ] } ], "source": [ "from gpt import GPTModel\n", "\n", "\n", "for model_abbrev in (\"small\", \"medium\", \"large\", \"xl\"):\n", " model_name = f\"gpt2-{model_abbrev}\"\n", " CONFIG = get_config(GPT_CONFIG_124M, model_name=model_name)\n", " model = GPTModel(CONFIG)\n", " print(f\"\\n\\n{model_name}:\")\n", " calculate_size(model)" ] }, { "cell_type": "markdown", "id": "f5f2306e-5dc8-498e-92ee-70ae7ec37ac1", "metadata": {}, "source": [ "# Exercise 4.3: Using separate dropout parameters" ] }, { "cell_type": "code", "execution_count": 6, "id": "5fee2cf5-61c3-4167-81b5-44ea155bbaf2", "metadata": {}, "outputs": [], "source": [ "GPT_CONFIG_124M = {\n", " \"vocab_size\": 50257,\n", " \"ctx_len\": 1024,\n", " \"emb_dim\": 768,\n", " \"n_heads\": 12,\n", " \"n_layers\": 12,\n", " \"drop_rate_emb\": 0.1, # NEW: dropout for embedding layers\n", " \"drop_rate_ffn\": 0.1, # NEW: dropout for feed forward module\n", " \"drop_rate_attn\": 0.1, # NEW: dropout for multi-head attention \n", " \"drop_rate_resid\": 0.1, # NEW: dropout for residual connections \n", " \"qkv_bias\": False\n", "}" ] }, { "cell_type": "code", "execution_count": 7, "id": "5aa1b0c1-d78a-48fc-ad08-4802458b43f7", "metadata": {}, "outputs": [], "source": [ "import torch.nn as nn\n", "from gpt import MultiHeadAttention, LayerNorm, GELU\n", "\n", "class FeedForward(nn.Module):\n", " def __init__(self, cfg):\n", " super().__init__()\n", " self.layers = nn.Sequential(\n", " nn.Linear(cfg[\"emb_dim\"], 4 * cfg[\"emb_dim\"]),\n", " GELU(),\n", " nn.Linear(4 * cfg[\"emb_dim\"], cfg[\"emb_dim\"]),\n", " nn.Dropout(cfg[\"drop_rate_ffn\"]) # NEW: dropout for feed forward module\n", " )\n", "\n", " def forward(self, x):\n", " return self.layers(x)\n", "\n", "\n", "class TransformerBlock(nn.Module):\n", " def __init__(self, cfg):\n", " super().__init__()\n", " self.att = MultiHeadAttention(\n", " d_in=cfg[\"emb_dim\"],\n", " d_out=cfg[\"emb_dim\"],\n", " block_size=cfg[\"ctx_len\"],\n", " num_heads=cfg[\"n_heads\"], \n", " dropout=cfg[\"drop_rate_attn\"], # NEW: dropout for multi-head attention\n", " qkv_bias=cfg[\"qkv_bias\"])\n", " self.ff = FeedForward(cfg)\n", " self.norm1 = LayerNorm(cfg[\"emb_dim\"])\n", " self.norm2 = LayerNorm(cfg[\"emb_dim\"])\n", " self.drop_resid = nn.Dropout(cfg[\"drop_rate_resid\"])\n", "\n", " def forward(self, x):\n", " # Shortcut connection for attention block\n", " shortcut = x\n", " x = self.norm1(x)\n", " x = self.att(x) # Shape [batch_size, num_tokens, emb_size]\n", " x = self.drop_resid(x)\n", " x = x + shortcut # Add the original input back\n", "\n", " # Shortcut connection for feed-forward block\n", " shortcut = x\n", " x = self.norm2(x)\n", " x = self.ff(x)\n", " x = self.drop_resid(x)\n", " x = x + shortcut # Add the original input back\n", "\n", " return x\n", "\n", "\n", "class GPTModel(nn.Module):\n", " def __init__(self, cfg):\n", " super().__init__()\n", " self.tok_emb = nn.Embedding(cfg[\"vocab_size\"], cfg[\"emb_dim\"])\n", " self.pos_emb = nn.Embedding(cfg[\"ctx_len\"], cfg[\"emb_dim\"])\n", " self.drop_emb = nn.Dropout(cfg[\"drop_rate_emb\"]) # NEW: dropout for embedding layers\n", "\n", " self.trf_blocks = nn.Sequential(\n", " *[TransformerBlock(cfg) for _ in range(cfg[\"n_layers\"])])\n", "\n", " self.final_norm = LayerNorm(cfg[\"emb_dim\"])\n", " self.out_head = nn.Linear(cfg[\"emb_dim\"], cfg[\"vocab_size\"], bias=False)\n", "\n", " def forward(self, in_idx):\n", " batch_size, seq_len = in_idx.shape\n", " tok_embeds = self.tok_emb(in_idx)\n", " pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))\n", " x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]\n", " x = self.trf_blocks(x)\n", " x = self.final_norm(x)\n", " logits = self.out_head(x)\n", " return logits" ] }, { "cell_type": "code", "execution_count": 8, "id": "1d013d32-c275-4f42-be21-9010f1537227", "metadata": {}, "outputs": [], "source": [ "import torch\n", "\n", "torch.manual_seed(123)\n", "model = GPTModel(GPT_CONFIG_124M)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }