{ "cells": [ { "cell_type": "markdown", "id": "6d6bc54f-2b16-4b0f-be69-957eed5d112f", "metadata": {}, "source": [ "\n", "\n", "\n", "\n", "\n", "
\n", "\n", "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka
\n", "
Code repository: https://github.com/rasbt/LLMs-from-scratch\n", "
\n", "
\n", "\n", "
" ] }, { "cell_type": "markdown", "id": "72953590-5363-4398-85ce-54bde07f3d8a", "metadata": {}, "source": [ "# Bonus Code for Chapter 5" ] }, { "cell_type": "markdown", "id": "1a4ab5ee-e7b9-45d3-a82b-a12bcfc0945a", "metadata": {}, "source": [ "## Alternative Weight Loading from PyTorch state dicts" ] }, { "cell_type": "markdown", "id": "b2feea87-49f0-48b9-b925-b8f0dda4096f", "metadata": {}, "source": [ "- In the main chapter, we loaded the GPT model weights directly from OpenAI\n", "- This notebook provides alternative weight loading code to load the model weights from PyTorch state dict files that I created from the original TensorFlow files and uploaded to the [Hugging Face Model Hub](https://huggingface.co/docs/hub/en/models-the-hub) at [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch)\n", "- This is conceptually the same as loading weights of a PyTorch model from via the state-dict method described in chapter 5:\n", "\n", "```python\n", "state_dict = torch.load(\"model_state_dict.pth\")\n", "model.load_state_dict(state_dict) \n", "```" ] }, { "cell_type": "markdown", "id": "e3f9fbb2-3e39-41ee-8a08-58ba0434a8f3", "metadata": {}, "source": [ "### Choose model" ] }, { "cell_type": "code", "execution_count": 1, "id": "b0467eff-b43c-4a38-93e8-5ed87a5fc2b1", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch version: 2.6.0\n" ] } ], "source": [ "from importlib.metadata import version\n", "\n", "pkgs = [\"torch\"]\n", "for p in pkgs:\n", " print(f\"{p} version: {version(p)}\")" ] }, { "cell_type": "code", "execution_count": 2, "id": "9ea9b1bc-7881-46ad-9555-27a9cf23faa7", "metadata": {}, "outputs": [], "source": [ "BASE_CONFIG = {\n", " \"vocab_size\": 50257, # Vocabulary size\n", " \"context_length\": 1024, # Context length\n", " \"drop_rate\": 0.0, # Dropout rate\n", " \"qkv_bias\": True # Query-key-value bias\n", "}\n", "\n", "model_configs = {\n", " \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n", " \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n", " \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n", " \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n", "}\n", "\n", "\n", "CHOOSE_MODEL = \"gpt2-small (124M)\"\n", "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])" ] }, { "cell_type": "markdown", "id": "d78fc2b0-ba27-4aff-8aa3-bc6e04fca69d", "metadata": {}, "source": [ "### Download file" ] }, { "cell_type": "code", "execution_count": 3, "id": "ca224672-a0f7-4b39-9bc9-19ddde69487b", "metadata": {}, "outputs": [], "source": [ "file_name = \"gpt2-small-124M.pth\"\n", "# file_name = \"gpt2-medium-355M.pth\"\n", "# file_name = \"gpt2-large-774M.pth\"\n", "# file_name = \"gpt2-xl-1558M.pth\"" ] }, { "cell_type": "code", "execution_count": 4, "id": "e7b22375-6fac-4e90-9063-daa4de86c778", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloaded to gpt2-small-124M.pth\n" ] } ], "source": [ "import os\n", "import urllib.request\n", "\n", "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n", "\n", "if not os.path.exists(file_name):\n", " urllib.request.urlretrieve(url, file_name)\n", " print(f\"Downloaded to {file_name}\")" ] }, { "cell_type": "markdown", "id": "e61f0990-74cf-4b6d-85e5-4c7d0554db32", "metadata": {}, "source": [ "### Load weights" ] }, { "cell_type": "code", "execution_count": 5, "id": "cda44d37-92c0-4c19-a70a-15711513afce", "metadata": {}, "outputs": [], "source": [ "import torch\n", "from llms_from_scratch.ch04 import GPTModel\n", "# For llms_from_scratch installation instructions, see:\n", "# https://github.com/rasbt/LLMs-from-scratch/tree/main/pkg\n", "\n", "\n", "gpt = GPTModel(BASE_CONFIG)\n", "gpt.load_state_dict(torch.load(file_name, weights_only=True))\n", "gpt.eval()\n", "\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "gpt.to(device);" ] }, { "cell_type": "markdown", "id": "e0297fc4-11dc-4093-922f-dcaf85a75344", "metadata": {}, "source": [ "### Generate text" ] }, { "cell_type": "code", "execution_count": 6, "id": "4ddd0d51-3ade-4890-9bab-d63f141d095f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Output text:\n", " Every effort moves forward, but it's not enough.\n", "\n", "\"I'm not going to sit here and say, 'I'm not going to do this,'\n" ] } ], "source": [ "import tiktoken\n", "from llms_from_scratch.ch05 import generate, text_to_token_ids, token_ids_to_text\n", "\n", "\n", "torch.manual_seed(123)\n", "\n", "tokenizer = tiktoken.get_encoding(\"gpt2\")\n", "\n", "token_ids = generate(\n", " model=gpt.to(device),\n", " idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n", " max_new_tokens=30,\n", " context_size=BASE_CONFIG[\"context_length\"],\n", " top_k=1,\n", " temperature=1.0\n", ")\n", "\n", "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))" ] }, { "cell_type": "markdown", "id": "aa4a7912-ae51-4786-8ef4-42bd53682932", "metadata": {}, "source": [ "## Alternative safetensors file" ] }, { "cell_type": "markdown", "id": "2f774001-9cda-4b1f-88c5-ef99786a612b", "metadata": {}, "source": [ "- In addition, the [https://huggingface.co/rasbt/gpt2-from-scratch-pytorch](https://huggingface.co/rasbt/gpt2-from-scratch-pytorch) repository contains so-called `.safetensors` versions of the state dicts\n", "- The appeal of `.safetensors` files lies in their secure design, as they only store tensor data and avoid the execution of potentially malicious code during loading\n", "- In newer versions of PyTorch (e.g., 2.0 and newer), a `weights_only=True` argument can be used with `torch.load` (e.g., `torch.load(\"model_state_dict.pth\", weights_only=True)`) to improve safety by skipping the execution of code and loading only the weights (this is now enabled by default in PyTorch 2.6 and newer); so in that case loading the weights from the state dict files should not be a concern (anymore)\n", "- However, the code block below briefly shows how to load the model from these `.safetensor` files" ] }, { "cell_type": "code", "execution_count": 7, "id": "c0a4fd86-4119-4a94-ae5e-13fb60d198bc", "metadata": {}, "outputs": [], "source": [ "file_name = \"gpt2-small-124M.safetensors\"\n", "# file_name = \"gpt2-medium-355M.safetensors\"\n", "# file_name = \"gpt2-large-774M.safetensors\"\n", "# file_name = \"gpt2-xl-1558M.safetensors\"" ] }, { "cell_type": "code", "execution_count": 8, "id": "20f96c2e-3469-47fb-bad3-e9173a1f1ba3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloaded to gpt2-small-124M.safetensors\n" ] } ], "source": [ "import os\n", "import urllib.request\n", "\n", "url = f\"https://huggingface.co/rasbt/gpt2-from-scratch-pytorch/resolve/main/{file_name}\"\n", "\n", "if not os.path.exists(file_name):\n", " urllib.request.urlretrieve(url, file_name)\n", " print(f\"Downloaded to {file_name}\")" ] }, { "cell_type": "code", "execution_count": 10, "id": "d16a69b3-9bb4-42f8-8e4f-cc62a1a1a083", "metadata": {}, "outputs": [], "source": [ "# Load file\n", "\n", "from safetensors.torch import load_file\n", "\n", "gpt = GPTModel(BASE_CONFIG)\n", "gpt.load_state_dict(load_file(file_name))\n", "gpt.eval();" ] }, { "cell_type": "code", "execution_count": 11, "id": "352e57f7-8d82-4c12-900c-03e41bc9de58", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Output text:\n", " Every effort moves forward, but it's not enough.\n", "\n", "\"I'm not going to sit here and say, 'I'm not going to do this,'\n" ] } ], "source": [ "token_ids = generate(\n", " model=gpt.to(device),\n", " idx=text_to_token_ids(\"Every effort moves\", tokenizer).to(device),\n", " max_new_tokens=30,\n", " context_size=BASE_CONFIG[\"context_length\"],\n", " top_k=1,\n", " temperature=1.0\n", ")\n", "\n", "print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }