# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import argparse import os from pathlib import Path import time import urllib.request import zipfile import pandas as pd import tiktoken import torch from torch.utils.data import DataLoader from torch.utils.data import Dataset from gpt_download import download_and_load_gpt2 from previous_chapters import GPTModel, load_weights_into_gpt class LoRALayer(torch.nn.Module): def __init__(self, in_dim, out_dim, rank, alpha): super().__init__() std_dev = 1 / torch.sqrt(torch.tensor(rank).float()) self.A = torch.nn.Parameter(torch.randn(in_dim, rank) * std_dev) self.B = torch.nn.Parameter(torch.zeros(rank, out_dim)) self.alpha = alpha def forward(self, x): x = self.alpha * (x @ self.A @ self.B) return x class LinearWithLoRA(torch.nn.Module): def __init__(self, linear, rank, alpha): super().__init__() self.linear = linear self.lora = LoRALayer( linear.in_features, linear.out_features, rank, alpha ) def forward(self, x): return self.linear(x) + self.lora(x) class SpamDataset(Dataset): def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256): self.data = pd.read_csv(csv_file) self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer) # Pre-tokenize texts self.encoded_texts = [ tokenizer.encode(text)[:self.max_length] for text in self.data["Text"] ] # Pad sequences to the longest sequence self.encoded_texts = [ et + [pad_token_id] * (self.max_length - len(et)) for et in self.encoded_texts ] def __getitem__(self, index): encoded = self.encoded_texts[index] label = self.data.iloc[index]["Label"] return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long) def __len__(self): return len(self.data) def _longest_encoded_length(self, tokenizer): max_length = 0 for text in self.data["Text"]: encoded_length = len(tokenizer.encode(text)) if encoded_length > max_length: max_length = encoded_length return max_length def download_and_unzip(url, zip_path, extract_to, new_file_path): if new_file_path.exists(): print(f"{new_file_path} already exists. Skipping download and extraction.") return # Downloading the file with urllib.request.urlopen(url) as response: with open(zip_path, "wb") as out_file: out_file.write(response.read()) # Unzipping the file with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(extract_to) # Renaming the file to indicate its format original_file = Path(extract_to) / "SMSSpamCollection" os.rename(original_file, new_file_path) print(f"File downloaded and saved as {new_file_path}") def random_split(df, train_frac, validation_frac): # Shuffle the entire DataFrame df = df.sample(frac=1, random_state=123).reset_index(drop=True) # Calculate split indices train_end = int(len(df) * train_frac) validation_end = train_end + int(len(df) * validation_frac) # Split the DataFrame train_df = df[:train_end] validation_df = df[train_end:validation_end] test_df = df[validation_end:] return train_df, validation_df, test_df def create_dataset_csvs(data_file_path): df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"]) # Create balanced dataset n_spam = df[df["Label"] == "spam"].shape[0] ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123) balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]]) balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True) balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1}) # Sample and save csv files train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1) train_df.to_csv("train.csv", index=None) validation_df.to_csv("validation.csv", index=None) test_df.to_csv("test.csv", index=None) def instantiate_model(choose_model, load_weights): BASE_CONFIG = { "vocab_size": 50257, # Vocabulary size "context_length": 1024, # Context length "drop_rate": 0.0, # Dropout rate "qkv_bias": True # Query-key-value bias } model_configs = { "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12}, "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16}, "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20}, "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25}, } BASE_CONFIG.update(model_configs[choose_model]) if not load_weights: torch.manual_seed(123) model = GPTModel(BASE_CONFIG) if load_weights: model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")") settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2") load_weights_into_gpt(model, params) model.eval() return model def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1): input_batch, target_batch = input_batch.to(device), target_batch.to(device) logits = model(input_batch)[:, trainable_token, :] # Logits of last output token loss = torch.nn.functional.cross_entropy(logits, target_batch) return loss def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_token=-1): total_loss = 0. if len(data_loader) == 0: return float("nan") elif num_batches is None: num_batches = len(data_loader) else: # Reduce the number of batches to match the total number of batches in the data loader # if num_batches exceeds the number of batches in the data loader num_batches = min(num_batches, len(data_loader)) for i, (input_batch, target_batch) in enumerate(data_loader): if i < num_batches: loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token) total_loss += loss.item() else: break return total_loss / num_batches @torch.no_grad() # Disable gradient tracking for efficiency def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token=-1): model.eval() correct_predictions, num_examples = 0, 0 if num_batches is None: num_batches = len(data_loader) else: num_batches = min(num_batches, len(data_loader)) for i, (input_batch, target_batch) in enumerate(data_loader): if i < num_batches: input_batch, target_batch = input_batch.to(device), target_batch.to(device) logits = model(input_batch)[:, trainable_token, :] # Logits of last output token predicted_labels = torch.argmax(logits, dim=-1) num_examples += predicted_labels.shape[0] correct_predictions += (predicted_labels == target_batch).sum().item() else: break return correct_predictions / num_examples def evaluate_model(model, train_loader, val_loader, device, eval_iter, trainable_token=-1): model.eval() with torch.no_grad(): train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token) val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token) model.train() return train_loss, val_loss def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs, eval_freq, eval_iter, tokenizer, max_steps=None, trainable_token=-1): # Initialize lists to track losses and tokens seen train_losses, val_losses, train_accs, val_accs = [], [], [], [] examples_seen, global_step = 0, -1 # Main training loop for epoch in range(num_epochs): model.train() # Set model to training mode for input_batch, target_batch in train_loader: optimizer.zero_grad() # Reset loss gradients from previous epoch loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token) loss.backward() # Calculate loss gradients optimizer.step() # Update model weights using loss gradients examples_seen += input_batch.shape[0] # New: track examples instead of tokens global_step += 1 # Optional evaluation step if global_step % eval_freq == 0: train_loss, val_loss = evaluate_model( model, train_loader, val_loader, device, eval_iter, trainable_token=trainable_token) train_losses.append(train_loss) val_losses.append(val_loss) print(f"Ep {epoch+1} (Step {global_step:06d}): " f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}") if max_steps is not None and global_step > max_steps: break # New: Calculate accuracy after each epoch train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token) val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token) print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="") print(f"Validation accuracy: {val_accuracy*100:.2f}%") train_accs.append(train_accuracy) val_accs.append(val_accuracy) if max_steps is not None and global_step > max_steps: break return train_losses, val_losses, train_accs, val_accs, examples_seen def replace_linear_with_lora(model, rank, alpha): for name, module in model.named_children(): if isinstance(module, torch.nn.Linear): # Replace the Linear layer with LinearWithLoRA setattr(model, name, LinearWithLoRA(module, rank, alpha)) else: # Recursively apply the same function to child modules replace_linear_with_lora(module, rank, alpha) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_size", type=str, default="gpt2-small (124M)", help=( "Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)'," " 'gpt2-large (774M)', 'gpt2-xl (1558M)'." ) ) parser.add_argument( "--weights", type=str, default="pretrained", help=( "Whether to use 'pretrained' or 'random' weights." ) ) parser.add_argument( "--trainable_layers", type=str, default="last_block", help=( "Which layers to train. Options: 'all', 'last_block', 'last_layer', 'lora'." ) ) parser.add_argument( "--trainable_token", type=str, default="last", help=( "Which token to train. Options: 'first', 'last'." ) ) parser.add_argument( "--context_length", type=str, default="longest_training_example", help=( "The context length of the data inputs." "Options: 'longest_training_example', 'model_context_length' or integer value." ) ) parser.add_argument( "--lora_rank", type=int, default=8, help=( "The LoRA rank when choosing `--trainable_layers lora`" ) ) parser.add_argument( "--lora_alpha", type=int, default=8, help=( "The LoRA alpha value when choosing `--trainable_layers lora`" ) ) args = parser.parse_args() if args.trainable_token == "first": args.trainable_token = 0 elif args.trainable_token == "last": args.trainable_token = -1 else: raise ValueError("Invalid --trainable_token argument") ############################### # Load model ############################### if args.weights == "pretrained": load_weights = True elif args.weights == "random": load_weights = False else: raise ValueError("Invalid --weights argument.") model = instantiate_model(args.model_size, load_weights) for param in model.parameters(): param.requires_grad = False if args.model_size == "gpt2-small (124M)": in_features = 768 elif args.model_size == "gpt2-medium (355M)": in_features = 1024 elif args.model_size == "gpt2-large (774M)": in_features = 1280 elif args.model_size == "gpt2-xl (1558M)": in_features = 1600 else: raise ValueError("Invalid --model_size argument") torch.manual_seed(123) model.out_head = torch.nn.Linear(in_features=in_features, out_features=2) if args.trainable_layers == "last_layer": pass elif args.trainable_layers == "last_block": for param in model.trf_blocks[-1].parameters(): param.requires_grad = True for param in model.final_norm.parameters(): param.requires_grad = True elif args.trainable_layers == "all": for param in model.parameters(): param.requires_grad = True elif args.trainable_layers == "lora": replace_linear_with_lora(model, rank=args.lora_rank, alpha=args.lora_alpha) else: raise ValueError("Invalid --trainable_layers argument.") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) ############################### # Instantiate dataloaders ############################### url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip" zip_path = "sms_spam_collection.zip" extract_to = "sms_spam_collection" new_file_path = Path(extract_to) / "SMSSpamCollection.tsv" base_path = Path(".") file_names = ["train.csv", "validation.csv", "test.csv"] all_exist = all((base_path / file_name).exists() for file_name in file_names) if not all_exist: download_and_unzip(url, zip_path, extract_to, new_file_path) create_dataset_csvs(new_file_path) tokenizer = tiktoken.get_encoding("gpt2") train_dataset = None if args.context_length == "model_context_length": max_length = model.pos_emb.weight.shape[0] elif args.context_length == "longest_training_example": train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer) max_length = train_dataset.max_length else: try: max_length = int(args.context_length) except ValueError: raise ValueError("Invalid --context_length argument") if train_dataset is None: train_dataset = SpamDataset(base_path / "train.csv", max_length=max_length, tokenizer=tokenizer) val_dataset = SpamDataset(base_path / "validation.csv", max_length=max_length, tokenizer=tokenizer) test_dataset = SpamDataset(base_path / "test.csv", max_length=max_length, tokenizer=tokenizer) tokenizer = tiktoken.get_encoding("gpt2") num_workers = 0 batch_size = 8 train_loader = DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True, ) val_loader = DataLoader( dataset=val_dataset, batch_size=batch_size, num_workers=num_workers, drop_last=False, ) test_loader = DataLoader( dataset=test_dataset, batch_size=batch_size, num_workers=num_workers, drop_last=False, ) ############################### # Train model ############################### start_time = time.time() torch.manual_seed(123) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1) num_epochs = 5 train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple( model, train_loader, val_loader, optimizer, device, num_epochs=num_epochs, eval_freq=50, eval_iter=5, tokenizer=tokenizer, max_steps=None, trainable_token=args.trainable_token ) end_time = time.time() execution_time_minutes = (end_time - start_time) / 60 print(f"Training completed in {execution_time_minutes:.2f} minutes.") ############################### # Evaluate model ############################### train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token=args.trainable_token) val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token=args.trainable_token) test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token=args.trainable_token) print(f"Training accuracy: {train_accuracy*100:.2f}%") print(f"Validation accuracy: {val_accuracy*100:.2f}%") print(f"Test accuracy: {test_accuracy*100:.2f}%")