# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import os from pathlib import Path import torch import torch.nn as nn import tiktoken from tiktoken.load import load_tiktoken_bpe LLAMA32_CONFIG_1B = { "vocab_size": 128_256, # Vocabulary size "context_length": 8192, # Maximum context length to use (reduced to save memory) "orig_context_length": 131_072, # Context length that was used to train the model "emb_dim": 2048, # Embedding dimension "n_heads": 32, # Number of attention heads "n_layers": 16, # Number of layers "hidden_dim": 8192, # Size of the intermediate dimension in FeedForward "n_kv_groups": 8, # Key-Value groups for grouped-query attention "rope_base": 500_000.0, # The base in RoPE's "theta" "dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage "rope_freq": { # RoPE frequency scaling "factor": 32.0, "low_freq_factor": 1.0, "high_freq_factor": 4.0, "original_context_length": 8192, } } LLAMA32_CONFIG_3B = { "vocab_size": 128_256, # Vocabulary size "context_length": 8192, # Maximum context length to use (reduced to save memory) "orig_context_length": 131_072, # Context length that was used to train the model "emb_dim": 3072, # Embedding dimension "n_heads": 24, # Number of attention heads "n_layers": 28, # Number of layers "hidden_dim": 8192, # Size of the intermediate dimension in FeedForward "n_kv_groups": 8, # Key-Value groups for grouped-query attention "rope_base": 500_000.0, # The base in RoPE's "theta" "dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage "rope_freq": { # RoPE frequency scaling "factor": 32.0, "low_freq_factor": 1.0, "high_freq_factor": 4.0, "original_context_length": 8192, } } class Llama3Model(nn.Module): def __init__(self, cfg): super().__init__() # Main model parameters self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"]) self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin` [TransformerBlock(cfg) for _ in range(cfg["n_layers"])] ) self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"]) # Reusuable utilities self.register_buffer( "mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(), persistent=False ) if cfg["orig_context_length"] != cfg["context_length"]: cfg["rope_base"] = rescale_theta( cfg["rope_base"], cfg["orig_context_length"], cfg["context_length"] ) cos, sin = compute_rope_params( head_dim=cfg["emb_dim"] // cfg["n_heads"], theta_base=cfg["rope_base"], context_length=cfg["context_length"], freq_config=cfg["rope_freq"] ) self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) self.cfg = cfg def forward(self, in_idx): tok_embeds = self.tok_emb(in_idx) x = tok_embeds for block in self.trf_blocks: x = block(x, self.mask, self.cos, self.sin) x = self.final_norm(x) logits = self.out_head(x.to(self.cfg["dtype"])) return logits class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = GroupedQueryAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], num_heads=cfg["n_heads"], num_kv_groups=cfg["n_kv_groups"], dtype=cfg["dtype"] ) self.ff = FeedForward(cfg) self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) def forward(self, x, mask, cos, sin): # Shortcut connection for attention block shortcut = x x = self.norm1(x) x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size] x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = x + shortcut # Add the original input back return x class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False) def forward(self, x): x_fc1 = self.fc1(x) x_fc2 = self.fc2(x) x = nn.functional.silu(x_fc1) * x_fc2 return self.fc3(x) class GroupedQueryAttention(nn.Module): def __init__( self, d_in, d_out, num_heads, num_kv_groups, dtype=None ): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by num_heads" assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype) self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype) self.num_kv_groups = num_kv_groups self.group_size = num_heads // num_kv_groups self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype) self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype) def forward(self, x, mask, cos, sin): b, num_tokens, d_in = x.shape queries = self.W_query(x) # Shape: (b, num_tokens, d_out) keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim) values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim) # Reshape queries, keys, and values queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim) values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim) # Transpose keys, values, and queries keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim) values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim) queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim) # Apply RoPE keys = apply_rope(keys, cos, sin) queries = apply_rope(queries, cos, sin) # Expand keys and values to match the number of heads # Shape: (b, num_heads, num_tokens, head_dim) keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim) values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim) # For example, before repeat_interleave along dim=1 (query groups): # [K1, K2] # After repeat_interleave (each query group is repeated group_size times): # [K1, K1, K2, K2] # If we used regular repeat instead of repeat_interleave, we'd get: # [K1, K2, K1, K2] # Compute scaled dot-product attention (aka self-attention) with a causal mask # Shape: (b, num_heads, num_tokens, num_tokens) attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head # Use the mask to fill attention scores attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) assert keys.shape[-1] == self.head_dim # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.reshape(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32): assert head_dim % 2 == 0, "Embedding dimension must be even" # Compute the inverse frequencies inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim)) # Frequency adjustments if freq_config is not None: low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"] high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"] wavelen = 2 * torch.pi / inv_freq inv_freq_llama = torch.where( wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq ) smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / ( freq_config["high_freq_factor"] - freq_config["low_freq_factor"] ) smoothed_inv_freq = ( (1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq ) is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen) inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama) inv_freq = inv_freq_llama # Generate position indices positions = torch.arange(context_length, dtype=dtype) # Compute the angles angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2) # Expand angles to match the head_dim angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim) # Precompute sine and cosine cos = torch.cos(angles) sin = torch.sin(angles) return cos, sin def apply_rope(x, cos, sin): # x: (batch_size, num_heads, seq_len, head_dim) batch_size, num_heads, seq_len, head_dim = x.shape assert head_dim % 2 == 0, "Head dimension must be even" # Split x into first half and second half x1 = x[..., : head_dim // 2] # First half x2 = x[..., head_dim // 2:] # Second half # Adjust sin and cos shapes cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim) sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0) # Apply the rotary transformation rotated = torch.cat((-x2, x1), dim=-1) x_rotated = (x * cos) + (rotated * sin) # It's ok to use lower-precision after applying cos and sin rotation return x_rotated.to(dtype=x.dtype) def rescale_theta(theta_old, context_length_old, context_length_new): scaling_factor = context_length_new / context_length_old theta_new = theta_old * scaling_factor return theta_new ########################################## # Tokenizer ########################################## class Llama3Tokenizer: def __init__(self, model_path): assert os.path.isfile(model_path), f"Model file {model_path} not found" mergeable_ranks = load_tiktoken_bpe(model_path) self.special_tokens = { "<|begin_of_text|>": 128000, "<|end_of_text|>": 128001, "<|start_header_id|>": 128006, "<|end_header_id|>": 128007, "<|eot_id|>": 128009, } self.special_tokens.update({ f"<|reserved_{i}|>": 128002 + i for i in range(256) if (128002 + i) not in self.special_tokens.values() }) self.model = tiktoken.Encoding( name=Path(model_path).name, pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+", mergeable_ranks=mergeable_ranks, special_tokens=self.special_tokens ) def encode(self, text, bos=False, eos=False, allowed_special=set(), disallowed_special=()): if bos: tokens = [self.special_tokens["<|begin_of_text|>"]] else: tokens = [] tokens += self.model.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special) if eos: tokens.append(self.special_tokens["<|end_of_text|>"]) return tokens def decode(self, tokens): return self.model.decode(tokens) class ChatFormat: def __init__(self, tokenizer): self.tokenizer = tokenizer def encode_header(self, message): tokens = [] tokens.append(self.tokenizer.special_tokens["<|start_header_id|>"]) tokens.extend(self.tokenizer.encode(message["role"], bos=False, eos=False)) tokens.append(self.tokenizer.special_tokens["<|end_header_id|>"]) tokens.extend(self.tokenizer.encode("\n\n", bos=False, eos=False)) return tokens def encode(self, text, allowed_special=None): message = { "role": "user", "content": text } tokens = self.encode_header(message) tokens.extend( self.tokenizer.encode( message["content"].strip(), bos=False, eos=False, allowed_special=allowed_special ) ) tokens.append(self.tokenizer.special_tokens["<|eot_id|>"]) return tokens def decode(self, token_ids): return self.tokenizer.decode(token_ids) def clean_text(text, header_end="assistant<|end_header_id|>\n\n"): # Find the index of the first occurrence of "<|end_header_id|>" index = text.find(header_end) if index != -1: # Return the substring starting after "<|end_header_id|>" return text[index + len(header_end):].strip() # Strip removes leading/trailing whitespace else: # If the token is not found, return the original text return text ###################################################################### # Llama 3 fast (alternative code geared towards efficiency) ###################################################################### class GroupedQueryAttentionFast(nn.Module): """ Drop-in replacement for GroupedQueryAttention but using PyTorch's scaled_dot_product_attention, which uses FlashAttention if run on an Ampere GPU (like A100) or newer and uses float16/bfloat16 or lower. """ def __init__(self, d_in, d_out, num_heads, num_kv_groups, dtype=None): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by num_heads" assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads self.num_kv_groups = num_kv_groups self.group_size = num_heads // num_kv_groups self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype) self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype) self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype) self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype) def forward(self, x, cos, sin): b, num_tokens, _ = x.shape # Project to queries, keys, values q = self.W_query(x).view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) k = self.W_key(x).view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2) v = self.W_value(x).view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2) # Apply Rotary Positional Embedding q = apply_rope(q, cos, sin) k = apply_rope(k, cos, sin) # Expand key/value groups to full head count k = k.repeat_interleave(self.group_size, dim=1) v = v.repeat_interleave(self.group_size, dim=1) # Efficient scaled dot-product attention attn_output = torch.nn.functional.scaled_dot_product_attention( q, k, v, is_causal=True # Enables Flash/FlexAttention kernels ) # Combine heads and project attn_output = attn_output.transpose(1, 2).reshape(b, num_tokens, self.d_out) return self.out_proj(attn_output) class TransformerBlockFast(nn.Module): """ Same as original TransformerBlock but uses GroupedQueryAttentionFast instead of GroupedQueryAttention. """ def __init__(self, cfg): super().__init__() self.att = GroupedQueryAttentionFast( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], num_heads=cfg["n_heads"], num_kv_groups=cfg["n_kv_groups"], dtype=cfg["dtype"] ) self.ff = FeedForward(cfg) self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) def forward(self, x, cos, sin): # Shortcut connection for attention block shortcut = x x = self.norm1(x) x = self.att(x, cos, sin) # Shape [batch_size, num_tokens, emb_size] x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = x + shortcut # Add the original input back return x class Llama3ModelFast(nn.Module): """ Same as original Llama3Model but uses TransformerBlockFast instead of TransformerBlock, which in turn uses GroupedQueryAttentionFast instead of GroupedQueryAttention. """ def __init__(self, cfg): super().__init__() # Main model parameters self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"]) self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, cos, sin` [TransformerBlockFast(cfg) for _ in range(cfg["n_layers"])] ) self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"]) if cfg["orig_context_length"] != cfg["context_length"]: cfg["rope_base"] = rescale_theta( cfg["rope_base"], cfg["orig_context_length"], cfg["context_length"] ) cos, sin = compute_rope_params( head_dim=cfg["emb_dim"] // cfg["n_heads"], theta_base=cfg["rope_base"], context_length=cfg["context_length"], freq_config=cfg["rope_freq"] ) self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) self.cfg = cfg def forward(self, in_idx): tok_embeds = self.tok_emb(in_idx) x = tok_embeds for block in self.trf_blocks: x = block(x, self.cos, self.sin) x = self.final_norm(x) logits = self.out_head(x.to(self.cfg["dtype"])) return logits