# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import os import json import urllib.request from pathlib import Path import torch import torch.nn as nn # 0.6 billion parameters QWEN_CONFIG_06_B = { "vocab_size": 151_936, # Vocabulary size "context_length": 40_960, # Context length that was used to train the model "emb_dim": 1024, # Embedding dimension "n_heads": 16, # Number of attention heads "n_layers": 28, # Number of layers "hidden_dim": 3072, # Size of the intermediate dimension in FeedForward "head_dim": 128, # Size of the heads in GQA "qk_norm": True, # Whether to normalize queries and values in GQA "n_kv_groups": 8, # Key-Value groups for grouped-query attention "rope_base": 1_000_000.0, # The base in RoPE's "theta" "dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage } # 1.7 billion parameters QWEN3_CONFIG_1_7B = { "vocab_size": 151_936, "context_length": 40_960, "emb_dim": 2048, # 2x larger than above "n_heads": 16, "n_layers": 28, "hidden_dim": 6144, # 2x larger than above "head_dim": 128, "qk_norm": True, "n_kv_groups": 8, "rope_base": 1_000_000.0, "dtype": torch.bfloat16, } # 4 billion parameters QWEN3_CONFIG_4B = { "vocab_size": 151_936, "context_length": 40_960, "emb_dim": 2560, # 25% larger than above "n_heads": 32, # 2x larger than above "n_layers": 36, # 29% larger than above "hidden_dim": 9728, # ~3x larger than above "head_dim": 128, "qk_norm": True, "n_kv_groups": 8, "rope_base": 1_000_000.0, "dtype": torch.bfloat16, } # 8 billion parameters QWEN3_CONFIG_8B = { "vocab_size": 151_936, "context_length": 40_960, "emb_dim": 4096, # 60% larger than above "n_heads": 32, "n_layers": 36, # 26% larger than above "hidden_dim": 12288, "head_dim": 128, "qk_norm": True, "n_kv_groups": 8, "rope_base": 1_000_000.0, "dtype": torch.bfloat16, } # 14 billion parameters QWEN3_CONFIG_14B = { "vocab_size": 151_936, "context_length": 40_960, "emb_dim": 5120, # 25% larger than above "n_heads": 40, # 25% larger than above "n_layers": 40, # 11% larger than above "hidden_dim": 17408, # 42% larger than above "head_dim": 128, "qk_norm": True, "n_kv_groups": 8, "rope_base": 1_000_000.0, "dtype": torch.bfloat16, } QWEN3_CONFIG_32B = { "vocab_size": 151_936, "context_length": 40_960, "emb_dim": 5120, "n_heads": 64, # 60% larger than above "n_layers": 64, # 60% larger than above "hidden_dim": 25600, # 47% larger than above "head_dim": 128, "qk_norm": True, "n_kv_groups": 8, "rope_base": 1_000_000.0, "dtype": torch.bfloat16, } class Qwen3Model(nn.Module): def __init__(self, cfg): super().__init__() # Main model parameters self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"]) self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin` [TransformerBlock(cfg) for _ in range(cfg["n_layers"])] ) self.final_norm = RMSNorm(cfg["emb_dim"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"]) # Reusuable utilities if cfg["head_dim"] is None: head_dim = cfg["emb_dim"] // cfg["n_heads"] else: head_dim = cfg["head_dim"] cos, sin = compute_rope_params( head_dim=head_dim, theta_base=cfg["rope_base"], context_length=cfg["context_length"] ) self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) self.cfg = cfg def forward(self, in_idx): # Forward pass tok_embeds = self.tok_emb(in_idx) x = tok_embeds num_tokens = x.shape[1] mask = torch.triu(torch.ones(num_tokens, num_tokens, device=x.device, dtype=torch.bool), diagonal=1) for block in self.trf_blocks: x = block(x, mask, self.cos, self.sin) x = self.final_norm(x) logits = self.out_head(x.to(self.cfg["dtype"])) return logits class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = GroupedQueryAttention( d_in=cfg["emb_dim"], num_heads=cfg["n_heads"], head_dim=cfg["head_dim"], num_kv_groups=cfg["n_kv_groups"], qk_norm=cfg["qk_norm"], dtype=cfg["dtype"] ) self.ff = FeedForward(cfg) self.norm1 = RMSNorm(cfg["emb_dim"], eps=1e-6) self.norm2 = RMSNorm(cfg["emb_dim"], eps=1e-6) def forward(self, x, mask, cos, sin): # Shortcut connection for attention block shortcut = x x = self.norm1(x) x = self.att(x, mask, cos, sin,) # Shape [batch_size, num_tokens, emb_size] x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = x + shortcut # Add the original input back return x class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False) def forward(self, x): x_fc1 = self.fc1(x) x_fc2 = self.fc2(x) x = nn.functional.silu(x_fc1) * x_fc2 return self.fc3(x) class GroupedQueryAttention(nn.Module): def __init__( self, d_in, num_heads, num_kv_groups, head_dim=None, qk_norm=False, dtype=None ): super().__init__() assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups" self.num_heads = num_heads self.num_kv_groups = num_kv_groups self.group_size = num_heads // num_kv_groups if head_dim is None: assert d_in % num_heads == 0, "`d_in` must be divisible by `num_heads` if `head_dim` is not set" head_dim = d_in // num_heads self.head_dim = head_dim self.d_out = num_heads * head_dim self.W_query = nn.Linear(d_in, self.d_out, bias=False, dtype=dtype) self.W_key = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype) self.W_value = nn.Linear(d_in, num_kv_groups * head_dim, bias=False, dtype=dtype) self.out_proj = nn.Linear(self.d_out, d_in, bias=False, dtype=dtype) if qk_norm: self.q_norm = RMSNorm(head_dim, eps=1e-6) self.k_norm = RMSNorm(head_dim, eps=1e-6) else: self.q_norm = self.k_norm = None def forward(self, x, mask, cos, sin): b, num_tokens, _ = x.shape # Apply projections queries = self.W_query(x) # (b, num_tokens, num_heads * head_dim) keys = self.W_key(x) # (b, num_tokens, num_kv_groups * head_dim) values = self.W_value(x) # (b, num_tokens, num_kv_groups * head_dim) # Reshape queries = queries.view(b, num_tokens, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2) values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim).transpose(1, 2) # Optional normalization if self.q_norm: queries = self.q_norm(queries) if self.k_norm: keys = self.k_norm(keys) # Apply RoPE queries = apply_rope(queries, cos, sin) keys = apply_rope(keys, cos, sin) # Expand K and V to match number of heads keys = keys.repeat_interleave(self.group_size, dim=1) values = values.repeat_interleave(self.group_size, dim=1) # Attention attn_scores = queries @ keys.transpose(2, 3) attn_scores = attn_scores.masked_fill(mask, -torch.inf) attn_weights = torch.softmax(attn_scores / self.head_dim**0.5, dim=-1) context = (attn_weights @ values).transpose(1, 2).reshape(b, num_tokens, self.d_out) return self.out_proj(context) def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, dtype=torch.float32): assert head_dim % 2 == 0, "Embedding dimension must be even" # Compute the inverse frequencies inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim)) # Generate position indices positions = torch.arange(context_length, dtype=dtype) # Compute the angles angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2) # Expand angles to match the head_dim angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim) # Precompute sine and cosine cos = torch.cos(angles) sin = torch.sin(angles) return cos, sin def apply_rope(x, cos, sin): # x: (batch_size, num_heads, seq_len, head_dim) batch_size, num_heads, seq_len, head_dim = x.shape assert head_dim % 2 == 0, "Head dimension must be even" # Split x into first half and second half x1 = x[..., : head_dim // 2] # First half x2 = x[..., head_dim // 2:] # Second half # Adjust sin and cos shapes cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim) sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0) # Apply the rotary transformation rotated = torch.cat((-x2, x1), dim=-1) x_rotated = (x * cos) + (rotated * sin) # It's ok to use lower-precision after applying cos and sin rotation return x_rotated.to(dtype=x.dtype) class RMSNorm(nn.Module): def __init__(self, emb_dim, eps=1e-6, bias=False, qwen3_compatible=True): super().__init__() self.eps = eps self.qwen3_compatible = qwen3_compatible self.scale = nn.Parameter(torch.ones(emb_dim)) self.shift = nn.Parameter(torch.zeros(emb_dim)) if bias else None def forward(self, x): input_dtype = x.dtype if self.qwen3_compatible: x = x.to(torch.float32) variance = x.pow(2).mean(dim=-1, keepdim=True) norm_x = x * torch.rsqrt(variance + self.eps) norm_x = norm_x * self.scale if self.shift is not None: norm_x = norm_x + self.shift return norm_x.to(input_dtype) def load_weights_into_qwen(model, param_config, params): def assign(left, right, tensor_name="unknown"): if left.shape != right.shape: raise ValueError(f"Shape mismatch in tensor '{tensor_name}'. Left: {left.shape}, Right: {right.shape}") return torch.nn.Parameter(right.clone().detach() if isinstance(right, torch.Tensor) else torch.tensor(right)) model.tok_emb.weight = assign(model.tok_emb.weight, params["model.embed_tokens.weight"], "model.embed_tokens.weight") for l in range(param_config["n_layers"]): block = model.trf_blocks[l] att = block.att # Q, K, V projections att.W_query.weight = assign( att.W_query.weight, params[f"model.layers.{l}.self_attn.q_proj.weight"], f"model.layers.{l}.self_attn.q_proj.weight" ) att.W_key.weight = assign( att.W_key.weight, params[f"model.layers.{l}.self_attn.k_proj.weight"], f"model.layers.{l}.self_attn.k_proj.weight" ) att.W_value.weight = assign( att.W_value.weight, params[f"model.layers.{l}.self_attn.v_proj.weight"], f"model.layers.{l}.self_attn.v_proj.weight" ) # Output projection att.out_proj.weight = assign( att.out_proj.weight, params[f"model.layers.{l}.self_attn.o_proj.weight"], f"model.layers.{l}.self_attn.o_proj.weight" ) # QK norms if hasattr(att, "q_norm") and att.q_norm is not None: att.q_norm.scale = assign( att.q_norm.scale, params[f"model.layers.{l}.self_attn.q_norm.weight"], f"model.layers.{l}.self_attn.q_norm.weight" ) if hasattr(att, "k_norm") and att.k_norm is not None: att.k_norm.scale = assign( att.k_norm.scale, params[f"model.layers.{l}.self_attn.k_norm.weight"], f"model.layers.{l}.self_attn.k_norm.weight" ) # Attention layernorm block.norm1.scale = assign( block.norm1.scale, params[f"model.layers.{l}.input_layernorm.weight"], f"model.layers.{l}.input_layernorm.weight" ) # Feedforward weights block.ff.fc1.weight = assign( block.ff.fc1.weight, params[f"model.layers.{l}.mlp.gate_proj.weight"], f"model.layers.{l}.mlp.gate_proj.weight" ) block.ff.fc2.weight = assign( block.ff.fc2.weight, params[f"model.layers.{l}.mlp.up_proj.weight"], f"model.layers.{l}.mlp.up_proj.weight" ) block.ff.fc3.weight = assign( block.ff.fc3.weight, params[f"model.layers.{l}.mlp.down_proj.weight"], f"model.layers.{l}.mlp.down_proj.weight" ) block.norm2.scale = assign( block.norm2.scale, params[f"model.layers.{l}.post_attention_layernorm.weight"], f"model.layers.{l}.post_attention_layernorm.weight" ) # Final normalization and output head model.final_norm.scale = assign(model.final_norm.scale, params["model.norm.weight"], "model.norm.weight") # Model uses weight tying, hence we reuse the embedding layer weights here model.out_head.weight = assign(model.out_head.weight, params["model.embed_tokens.weight"], "model.embed_tokens.weight") class Qwen3Tokenizer(): def __init__(self, tokenizer_file_path="tokenizer.json", repo_id=None, add_generation_prompt=False, add_thinking=False): from tokenizers import Tokenizer self.tokenizer_file_path = tokenizer_file_path if add_generation_prompt != add_thinking: raise ValueError( "Only add_generation_prompt==add_thinking settings are currently supported" ) self.add_generation_prompt = add_generation_prompt self.add_thinking = add_thinking tokenizer_file_path_obj = Path(tokenizer_file_path) if not tokenizer_file_path_obj.is_file() and repo_id is not None: _ = download_from_huggingface( repo_id=repo_id, filename=str(tokenizer_file_path_obj.name), local_dir=str(tokenizer_file_path_obj.parent.name) ) self.tokenizer = Tokenizer.from_file(tokenizer_file_path) def encode(self, prompt): messages = [ {"role": "user", "content": prompt} ] formatted_prompt = self.format_qwen_chat( messages, add_generation_prompt=self.add_generation_prompt, add_thinking=self.add_thinking ) return self.tokenizer.encode(formatted_prompt).ids def decode(self, token_ids): return self.tokenizer.decode(token_ids, skip_special_tokens=False) @staticmethod def format_qwen_chat(messages, add_generation_prompt=False, add_thinking=False): prompt = "" for msg in messages: prompt += f"<|im_start|>{msg['role']}\n{msg['content']}<|im_end|>\n" if add_generation_prompt: prompt += "<|im_start|>assistant" if not add_thinking: prompt += "<|think>\n\n<|/think>\n\n" else: prompt += "\n" return prompt def download_from_huggingface(repo_id, filename, local_dir, revision="main"): base_url = "https://huggingface.co" url = f"{base_url}/{repo_id}/resolve/{revision}/{filename}" Path(local_dir).mkdir(parents=True, exist_ok=True) dest_path = os.path.join(local_dir, filename) if os.path.exists(dest_path): print(f"File already exists: {dest_path}") else: print(f"Downloading {url} to {dest_path}...") urllib.request.urlretrieve(url, dest_path) return dest_path def download_from_huggingface_from_snapshots(repo_id, local_dir): from huggingface_hub import hf_hub_download, snapshot_download from safetensors.torch import load_file # or your preferred loader repo_dir = snapshot_download(repo_id=repo_id, local_dir=local_dir) index_path = os.path.join(repo_dir, "model.safetensors.index.json") single_file_path = os.path.join(repo_dir, "model.safetensors") if os.path.exists(index_path): # Multi-shard model with open(index_path, "r") as f: index = json.load(f) weights_dict = {} for filename in set(index["weight_map"].values()): shard_path = os.path.join(repo_dir, filename) shard = load_file(shard_path) weights_dict.update(shard) elif os.path.exists(single_file_path): # Single-shard model weights_file = hf_hub_download( repo_id=repo_id, filename="model.safetensors", local_dir=local_dir, ) weights_dict = load_file(weights_file) else: raise FileNotFoundError("No model.safetensors or model.safetensors.index.json found.") return weights_dict