# This file collects all the relevant code that we covered thus far # throughout Chapters 2-4. # This file can be run as a standalone script. import tiktoken import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader ##################################### # Chapter 2 ##################################### class GPTDatasetV1(Dataset): def __init__(self, txt, tokenizer, max_length, stride): self.input_ids = [] self.target_ids = [] # Tokenize the entire text token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"}) # Use a sliding window to chunk the book into overlapping sequences of max_length for i in range(0, len(token_ids) - max_length, stride): input_chunk = token_ids[i:i + max_length] target_chunk = token_ids[i + 1: i + max_length + 1] self.input_ids.append(torch.tensor(input_chunk)) self.target_ids.append(torch.tensor(target_chunk)) def __len__(self): return len(self.input_ids) def __getitem__(self, idx): return self.input_ids[idx], self.target_ids[idx] def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True, num_workers=0): # Initialize the tokenizer tokenizer = tiktoken.get_encoding("gpt2") # Create dataset dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) # Create dataloader dataloader = DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers) return dataloader ##################################### # Chapter 3 ##################################### class MultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by num_heads" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs self.dropout = nn.Dropout(dropout) self.register_buffer("mask", torch.triu(torch.ones(context_length, context_length), diagonal=1)) def forward(self, x): b, num_tokens, d_in = x.shape keys = self.W_key(x) # Shape: (b, num_tokens, d_out) queries = self.W_query(x) values = self.W_value(x) # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) keys = keys.transpose(1, 2) queries = queries.transpose(1, 2) values = values.transpose(1, 2) # Compute scaled dot-product attention (aka self-attention) with a causal mask attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head # Original mask truncated to the number of tokens and converted to boolean mask_bool = self.mask.bool()[:num_tokens, :num_tokens] # Use the mask to fill attention scores attn_scores.masked_fill_(mask_bool, -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec ##################################### # Chapter 4 ##################################### class LayerNorm(nn.Module): def __init__(self, emb_dim): super().__init__() self.eps = 1e-5 self.scale = nn.Parameter(torch.ones(emb_dim)) self.shift = nn.Parameter(torch.zeros(emb_dim)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) var = x.var(dim=-1, keepdim=True, unbiased=False) norm_x = (x - mean) / torch.sqrt(var + self.eps) return self.scale * norm_x + self.shift class GELU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh( torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.layers = nn.Sequential( nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), GELU(), nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), ) def forward(self, x): return self.layers(x) class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = MultiHeadAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], context_length=cfg["context_length"], num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"]) self.ff = FeedForward(cfg) self.norm1 = LayerNorm(cfg["emb_dim"]) self.norm2 = LayerNorm(cfg["emb_dim"]) self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) def forward(self, x): # Shortcut connection for attention block shortcut = x x = self.norm1(x) x = self.att(x) # Shape [batch_size, num_tokens, emb_size] x = self.drop_shortcut(x) x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = self.drop_shortcut(x) x = x + shortcut # Add the original input back return x class GPTModel(nn.Module): def __init__(self, cfg): super().__init__() self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) self.drop_emb = nn.Dropout(cfg["drop_rate"]) self.trf_blocks = nn.Sequential( *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) self.final_norm = LayerNorm(cfg["emb_dim"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) def forward(self, in_idx): batch_size, seq_len = in_idx.shape tok_embeds = self.tok_emb(in_idx) pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] x = self.drop_emb(x) x = self.trf_blocks(x) x = self.final_norm(x) logits = self.out_head(x) return logits def generate_text_simple(model, idx, max_new_tokens, context_size): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): # Crop current context if it exceeds the supported context size # E.g., if LLM supports only 5 tokens, and the context size is 10 # then only the last 5 tokens are used as context idx_cond = idx[:, -context_size:] # Get the predictions with torch.no_grad(): logits = model(idx_cond) # Focus only on the last time step # (batch, n_token, vocab_size) becomes (batch, vocab_size) logits = logits[:, -1, :] # Get the idx of the vocab entry with the highest logits value idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) # Append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1) return idx def main(): GPT_CONFIG_124M = { "vocab_size": 50257, # Vocabulary size "context_length": 1024, # Context length "emb_dim": 768, # Embedding dimension "n_heads": 12, # Number of attention heads "n_layers": 12, # Number of layers "drop_rate": 0.1, # Dropout rate "qkv_bias": False # Query-Key-Value bias } torch.manual_seed(123) model = GPTModel(GPT_CONFIG_124M) model.eval() # disable dropout start_context = "Hello, I am" tokenizer = tiktoken.get_encoding("gpt2") encoded = tokenizer.encode(start_context) encoded_tensor = torch.tensor(encoded).unsqueeze(0) print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}") print("\nInput text:", start_context) print("Encoded input text:", encoded) print("encoded_tensor.shape:", encoded_tensor.shape) out = generate_text_simple( model=model, idx=encoded_tensor, max_new_tokens=10, context_size=GPT_CONFIG_124M["context_length"] ) decoded_text = tokenizer.decode(out.squeeze(0).tolist()) print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}") print("\nOutput:", out) print("Output length:", len(out[0])) print("Output text:", decoded_text) if __name__ == "__main__": main()