{ "cells": [ { "cell_type": "markdown", "id": "063850ab-22b0-4838-b53a-9bb11757d9d0", "metadata": {}, "source": [ "# Embedding Layers and Linear Layers" ] }, { "cell_type": "markdown", "id": "0315c598-701f-46ff-8806-15813cad0e51", "metadata": {}, "source": [ "- Embedding layers in PyTorch accomplish the same as linear layers that perform matrix multiplications; the reason we use embedding layers is computational efficiency\n", "- We will take a look at this relationship step by step using code examples in PyTorch" ] }, { "cell_type": "code", "execution_count": 2, "id": "061720f4-f025-4640-82a0-15098fa94cf9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "PyTorch version: 2.1.0.dev20230825\n" ] } ], "source": [ "import torch\n", "\n", "print(\"PyTorch version:\", torch.__version__)" ] }, { "cell_type": "markdown", "id": "a7895a66-7f69-4f62-9361-5c9da2eb76ef", "metadata": {}, "source": [ "## Using nn.Embedding" ] }, { "cell_type": "code", "execution_count": 12, "id": "cc489ea5-73db-40b9-959e-0d70cae25f40", "metadata": {}, "outputs": [], "source": [ "# Suppose we have the following 3 training examples,\n", "# which may represent token IDs in a LLM context\n", "idx = torch.tensor([2, 3, 1])\n", "\n", "# The number of rows in the embedding matrix can be determined\n", "# by obtaining the largest token ID + 1.\n", "# If the highest token ID is 3, then we want 4 rows, for the possible\n", "# token IDs 0, 1, 2, 3\n", "num_idx = max(idx)+1\n", "\n", "# The desired embedding dimension is a hyperparameter\n", "out_dim = 5" ] }, { "cell_type": "markdown", "id": "93d83a6e-8543-40af-b253-fe647640bf36", "metadata": {}, "source": [ "- Let's implement a simple embedding layer:" ] }, { "cell_type": "code", "execution_count": 14, "id": "60a7c104-36e1-4b28-bd02-a24a1099dc66", "metadata": {}, "outputs": [], "source": [ "# We use the random seed for reproducibility since\n", "# weights in the embedding layer are initialized with\n", "# small random values\n", "torch.manual_seed(123)\n", "\n", "embedding = torch.nn.Embedding(num_idx, out_dim)" ] }, { "cell_type": "markdown", "id": "dd96c00a-3297-4a50-8bfc-247aaea7e761", "metadata": {}, "source": [ "We can optionally take a look at the embedding weights:" ] }, { "cell_type": "code", "execution_count": 18, "id": "595f603e-8d2a-4171-8f94-eac8106b2e57", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Parameter containing:\n", "tensor([[ 0.3374, -0.1778, -0.3035, -0.5880, 1.5810],\n", " [ 1.3010, 1.2753, -0.2010, -0.1606, -0.4015],\n", " [ 0.6957, -1.8061, -1.1589, 0.3255, -0.6315],\n", " [-2.8400, -0.7849, -1.4096, -0.4076, 0.7953]], requires_grad=True)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "embedding.weight" ] }, { "cell_type": "markdown", "id": "c86eb562-61e2-4171-ab6e-b410a1fd5c18", "metadata": {}, "source": [ "- We can then use the embedding layers to obtain the vector representation of a training example with ID 1:" ] }, { "cell_type": "code", "execution_count": 17, "id": "8bbc0255-4805-4be9-9f4c-1d0d967ef9d5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 1.3010, 1.2753, -0.2010, -0.1606, -0.4015]],\n", " grad_fn=)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "embedding(torch.tensor([1]))" ] }, { "cell_type": "markdown", "id": "6a4d47f2-4691-47b8-9855-2528b6c285c9", "metadata": {}, "source": [ "- Below is a visualization of what happens under the hood:" ] }, { "cell_type": "markdown", "id": "12ffd155-7190-44b1-b6b6-45b11d6fe83b", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "87d1311b-cfb2-4afc-9e25-e4ecf35370d9", "metadata": {}, "source": [ "- Similarly, we can use embedding layers to obtain the vector representation of a training example with ID 2:" ] }, { "cell_type": "code", "execution_count": 19, "id": "c309266a-c601-4633-9404-2e10b1cdde8c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 0.6957, -1.8061, -1.1589, 0.3255, -0.6315]],\n", " grad_fn=)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "embedding(torch.tensor([2]))" ] }, { "cell_type": "markdown", "id": "7ad3b601-f68c-41b1-a28d-b624b94ef383", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "27dd54bd-85ae-4887-9c5e-3139da361cf4", "metadata": {}, "source": [ "- Now, let's convert all the training examples we have defined previously:" ] }, { "cell_type": "code", "execution_count": 22, "id": "0191aa4b-f6a8-4b0d-9c36-65e82b81d071", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 0.6957, -1.8061, -1.1589, 0.3255, -0.6315],\n", " [-2.8400, -0.7849, -1.4096, -0.4076, 0.7953],\n", " [ 1.3010, 1.2753, -0.2010, -0.1606, -0.4015]],\n", " grad_fn=)" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "idx = torch.tensor([2, 3, 1])\n", "embedding(idx)" ] }, { "cell_type": "markdown", "id": "146cf8eb-c517-4cd4-aa91-0e818fed7651", "metadata": {}, "source": [ "- Under the hood, it's still the same look-up concept:" ] }, { "cell_type": "markdown", "id": "b392eb43-0bda-4821-b446-b8dcbee8ae00", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "f0fe863b-d6a3-48f3-ace5-09ecd0eb7b59", "metadata": {}, "source": [ "## Using nn.Linear" ] }, { "cell_type": "markdown", "id": "138de6a4-2689-4c1f-96af-7899b2d82a4e", "metadata": {}, "source": [ "- Now, we will demonstrate that the embedding layer above accomplishes exactly the same as `nn.Linear` layer on a one-hot encoded representation in PyTorch\n", "- First, let's convert the token IDs into a one-hot representation:" ] }, { "cell_type": "code", "execution_count": 23, "id": "b5bb56cf-bc73-41ab-b107-91a43f77bdba", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0, 0, 1, 0],\n", " [0, 0, 0, 1],\n", " [0, 1, 0, 0]])" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "onehot = torch.nn.functional.one_hot(idx)\n", "onehot" ] }, { "cell_type": "markdown", "id": "aa45dfdf-fb26-4514-a176-75224f5f179b", "metadata": {}, "source": [ "- Next, we initialize a `Linear` layer, which caries out a matrix multiplication $X W^\\top$:" ] }, { "cell_type": "code", "execution_count": 28, "id": "ae04c1ed-242e-4dd7-b8f7-4b7e4caae383", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Parameter containing:\n", "tensor([[-0.2039, 0.0166, -0.2483, 0.1886],\n", " [-0.4260, 0.3665, -0.3634, -0.3975],\n", " [-0.3159, 0.2264, -0.1847, 0.1871],\n", " [-0.4244, -0.3034, -0.1836, -0.0983],\n", " [-0.3814, 0.3274, -0.1179, 0.1605]], requires_grad=True)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.manual_seed(123)\n", "linear = torch.nn.Linear(num_idx, out_dim, bias=False)" ] }, { "cell_type": "markdown", "id": "63efb98e-5cc4-4e8d-9fe6-ef0ad29ae2d7", "metadata": {}, "source": [ "- Note that the linear layer in PyTorch is also initialized with small random weights; to directly compare it to the `Embedding` layer above, we have to use the same small random weights, which is why we reassign them here:" ] }, { "cell_type": "code", "execution_count": 30, "id": "a3b90d69-761c-486e-bd19-b38a2988fe62", "metadata": {}, "outputs": [], "source": [ "linear.weight = torch.nn.Parameter(embedding.weight.T.detach())" ] }, { "cell_type": "markdown", "id": "9116482d-f1f9-45e2-9bf3-7ef5e9003898", "metadata": {}, "source": [ "- Now we can use the linear layer on the one-hot encoded representation of the inputs:" ] }, { "cell_type": "code", "execution_count": 31, "id": "90d2b0dd-9f1d-4c0f-bb16-1f6ce6b8ac2c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 0.6957, -1.8061, -1.1589, 0.3255, -0.6315],\n", " [-2.8400, -0.7849, -1.4096, -0.4076, 0.7953],\n", " [ 1.3010, 1.2753, -0.2010, -0.1606, -0.4015]], grad_fn=)" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "linear(onehot.float())" ] }, { "cell_type": "markdown", "id": "f6204bc8-92e2-4546-9cda-574fe1360fa2", "metadata": {}, "source": [ "As we can see, this is exactly the same as what we got when we used the embedding layer:" ] }, { "cell_type": "code", "execution_count": 32, "id": "2b057649-3176-4a54-b58c-fd8fbf818c61", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[ 0.6957, -1.8061, -1.1589, 0.3255, -0.6315],\n", " [-2.8400, -0.7849, -1.4096, -0.4076, 0.7953],\n", " [ 1.3010, 1.2753, -0.2010, -0.1606, -0.4015]],\n", " grad_fn=)" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "embedding(idx)" ] }, { "cell_type": "markdown", "id": "0e447639-8952-460e-8c8f-cf9e23c368c9", "metadata": {}, "source": [ "- What happens under the hood is the following computation for the first training example's token ID:" ] }, { "cell_type": "markdown", "id": "1830eccf-a707-4753-a24a-9b103f55594a", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "9ce5211a-14e6-46aa-a3a8-14609f086e97", "metadata": {}, "source": [ "- And for the second training example's token ID:" ] }, { "cell_type": "markdown", "id": "173f6026-a461-44da-b9c5-f571f8ec8bf3", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "e2608049-f5d1-49a9-a14b-82695fc32e6a", "metadata": {}, "source": [ "- Since all but one index in each one-hot encoded row are 0 (by design), this matrix multiplication is essentially the same as a look-up of the one-hot elements\n", "- This use of the matrix multiplication on one-hot encodings is equivalent to the embedding layer look-up but can be inefficient if we work with large embedding matrices, because there are a lot of wasteful multiplications by zero" ] }, { "cell_type": "code", "execution_count": null, "id": "5eacc005-86fc-490c-8f6a-dc37d8a0df7c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }