# This file collects all the relevant code that we covered thus far # throughout Chapters 3-4. # This file can be run as a standalone script. import time import tiktoken import torch import torch.nn as nn ##################################### # Chapter 3 ##################################### class MultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False, max_seq_len=None, window_size=None): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by num_heads" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs self.dropout = nn.Dropout(dropout) #################################################### # NEW self.max_seq_len = max_seq_len or context_length self.window_size = window_size or self.max_seq_len self.register_buffer("cache_k", None, persistent=False) self.register_buffer("cache_v", None, persistent=False) #################################################### def forward(self, x, use_cache=False): b, num_tokens, d_in = x.shape keys_new = self.W_key(x) # Shape: (b, num_tokens, d_out) values_new = self.W_value(x) queries = self.W_query(x) # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) keys_new = keys_new.view(b, num_tokens, self.num_heads, self.head_dim) values_new = values_new.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) keys_new = keys_new.transpose(1, 2) values_new = values_new.transpose(1, 2) queries = queries.transpose(1, 2) #################################################### # NEW if use_cache: if self.cache_k is None or self.cache_k.size(0) != b: self.cache_k = torch.zeros(b, self.num_heads, self.window_size, self.head_dim, device=x.device) self.cache_v = torch.zeros_like(self.cache_k) self.ptr_cur = 0 # pointer to next free slot # if incoming chunk would overflow discard oldest tokens if self.ptr_cur + num_tokens > self.window_size: overflow = self.ptr_cur + num_tokens - self.window_size # shift everything left by `overflow` (cheap view-copy) self.cache_k[:, :, :-overflow, :] = self.cache_k[:, :, overflow:, :].clone() self.cache_v[:, :, :-overflow, :] = self.cache_v[:, :, overflow:, :].clone() self.ptr_cur -= overflow # pointer after shift self.cache_k[:, :, self.ptr_cur:self.ptr_cur + num_tokens, :] = keys_new self.cache_v[:, :, self.ptr_cur:self.ptr_cur + num_tokens, :] = values_new self.ptr_cur += num_tokens keys = self.cache_k[:, :, :self.ptr_cur, :] values = self.cache_v[:, :, :self.ptr_cur, :] else: keys, values = keys_new, values_new self.ptr_cur = 0 # keep pointer sane if you interleave modes #################################################### # Compute scaled dot-product attention (aka self-attention) with a causal mask attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head #################################################### # NEW K = attn_scores.size(-1) if num_tokens == K: # No cache → use the pre‑baked triangular mask slice causal_mask = torch.triu(torch.ones(num_tokens, K, device=x.device, dtype=torch.bool), diagonal=1) else: # Cached: need to offset the diagonal by (K − num_tokens) offset = K - num_tokens # number of tokens already in cache before this chunk row_idx = torch.arange(num_tokens, device=x.device).unsqueeze(1) # (num_tokens, 1) col_idx = torch.arange(K, device=x.device).unsqueeze(0) # (1, K) causal_mask = row_idx + offset < col_idx # True where j > i+offset #################################################### # Use the mask to fill attention scores attn_scores.masked_fill_(causal_mask.unsqueeze(0).unsqueeze(0), -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec #################################################### # NEW def reset_cache(self): self.cache_k, self.cache_v = None, None #################################################### ##################################### # Chapter 4 ##################################### class LayerNorm(nn.Module): def __init__(self, emb_dim): super().__init__() self.eps = 1e-5 self.scale = nn.Parameter(torch.ones(emb_dim)) self.shift = nn.Parameter(torch.zeros(emb_dim)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) var = x.var(dim=-1, keepdim=True, unbiased=False) norm_x = (x - mean) / torch.sqrt(var + self.eps) return self.scale * norm_x + self.shift class GELU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh( torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.layers = nn.Sequential( nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), GELU(), nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), ) def forward(self, x): return self.layers(x) class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = MultiHeadAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], context_length=cfg["context_length"], num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"], window_size=cfg["kv_window_size"] if "kv_window_size" in cfg else cfg["context_length"] # NEW ) self.ff = FeedForward(cfg) self.norm1 = LayerNorm(cfg["emb_dim"]) self.norm2 = LayerNorm(cfg["emb_dim"]) self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) def forward(self, x, use_cache=False): # Shortcut connection for attention block shortcut = x x = self.norm1(x) # x = self.att(x) # Shape [batch_size, num_tokens, emb_size] #################################################### # NEW x = self.att(x, use_cache=use_cache) #################################################### x = self.drop_shortcut(x) x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = self.drop_shortcut(x) x = x + shortcut # Add the original input back return x class GPTModel(nn.Module): def __init__(self, cfg): super().__init__() self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) self.drop_emb = nn.Dropout(cfg["drop_rate"]) # self.trf_blocks = nn.Sequential( # *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) #################################################### # NEW self.trf_blocks = nn.ModuleList( [TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) self.ptr_current_pos = 0 #################################################### self.final_norm = LayerNorm(cfg["emb_dim"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) def forward(self, in_idx, use_cache=False): batch_size, seq_len = in_idx.shape tok_embeds = self.tok_emb(in_idx) # pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) #################################################### # NEW if use_cache: pos_ids = torch.arange(self.ptr_current_pos, self.ptr_current_pos + seq_len, device=in_idx.device, dtype=torch.long) self.ptr_current_pos += seq_len else: pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long) pos_embeds = self.pos_emb(pos_ids).unsqueeze(0) #################################################### x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] x = self.drop_emb(x) # x = self.trf_blocks(x) #################################################### # NEW for blk in self.trf_blocks: x = blk(x, use_cache=use_cache) #################################################### x = self.final_norm(x) logits = self.out_head(x) return logits #################################################### # NEW def reset_kv_cache(self): for blk in self.trf_blocks: blk.att.reset_cache() self.ptr_current_pos = 0 #################################################### def generate_text_simple(model, idx, max_new_tokens, context_size): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): # Crop current context if it exceeds the supported context size # E.g., if LLM supports only 5 tokens, and the context size is 10 # then only the last 5 tokens are used as context idx_cond = idx[:, -context_size:] # Get the predictions with torch.no_grad(): logits = model(idx_cond) # Focus only on the last time step # (batch, n_token, vocab_size) becomes (batch, vocab_size) logits = logits[:, -1, :] # Get the idx of the vocab entry with the highest logits value idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) # Append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1) return idx #################################################### # NEW def generate_text_simple_cached(model, idx, max_new_tokens, context_size=None, use_cache=True): model.eval() ctx_len = context_size or model.pos_emb.num_embeddings with torch.no_grad(): if use_cache: model.reset_kv_cache() logits = model(idx[:, -ctx_len:], use_cache=True) for _ in range(max_new_tokens): next_idx = logits[:, -1].argmax(dim=-1, keepdim=True) idx = torch.cat([idx, next_idx], dim=1) logits = model(next_idx, use_cache=True) else: for _ in range(max_new_tokens): logits = model(idx[:, -ctx_len:], use_cache=False) next_idx = logits[:, -1].argmax(dim=-1, keepdim=True) idx = torch.cat([idx, next_idx], dim=1) return idx #################################################### def main(): GPT_CONFIG_124M = { "vocab_size": 50257, # Vocabulary size "context_length": 1024, # Context length "emb_dim": 768, # Embedding dimension "n_heads": 12, # Number of attention heads "n_layers": 12, # Number of layers "drop_rate": 0.1, # Dropout rate "qkv_bias": False, # Query-Key-Value bias "kv_window_size": 1024 # NEW: KV cache window size } torch.manual_seed(123) model = GPTModel(GPT_CONFIG_124M) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() # disable dropout start_context = "Hello, I am" tokenizer = tiktoken.get_encoding("gpt2") encoded = tokenizer.encode(start_context) encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0) print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}") print("\nInput text:", start_context) print("Encoded input text:", encoded) print("encoded_tensor.shape:", encoded_tensor.shape) if torch.cuda.is_available(): torch.cuda.synchronize() start = time.time() # token_ids = generate_text_simple( # model=model, # idx=encoded_tensor, # max_new_tokens=200, # context_size=GPT_CONFIG_124M["context_length"] # ) #################################################### # NEW token_ids = generate_text_simple_cached( model=model, idx=encoded_tensor, max_new_tokens=200, ) #################################################### if torch.cuda.is_available(): torch.cuda.synchronize() total_time = time.time() - start decoded_text = tokenizer.decode(token_ids.squeeze(0).tolist()) print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}") print("\nOutput:", token_ids) print("Output length:", len(token_ids[0])) print("Output text:", decoded_text) print(f"\nTime: {total_time:.2f} sec") print(f"{int(len(token_ids[0])/total_time)} tokens/sec") if torch.cuda.is_available(): max_mem_bytes = torch.cuda.max_memory_allocated() max_mem_gb = max_mem_bytes / (1024 ** 3) print(f"Max memory allocated: {max_mem_gb:.2f} GB") if __name__ == "__main__": main()