# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import torch import torch.nn as nn class SelfAttention_v1(nn.Module): def __init__(self, d_in, d_out): super().__init__() self.W_query = nn.Parameter(torch.rand(d_in, d_out)) self.W_key = nn.Parameter(torch.rand(d_in, d_out)) self.W_value = nn.Parameter(torch.rand(d_in, d_out)) def forward(self, x): keys = x @ self.W_key queries = x @ self.W_query values = x @ self.W_value attn_scores = queries @ keys.T # omega attn_weights = torch.softmax( attn_scores / keys.shape[-1]**0.5, dim=-1 ) context_vec = attn_weights @ values return context_vec class SelfAttention_v2(nn.Module): def __init__(self, d_in, d_out, qkv_bias=False): super().__init__() self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) def forward(self, x): keys = self.W_key(x) queries = self.W_query(x) values = self.W_value(x) attn_scores = queries @ keys.T attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) context_vec = attn_weights @ values return context_vec class CausalAttention(nn.Module): def __init__(self, d_in, d_out, context_length, dropout, qkv_bias=False): super().__init__() self.d_out = d_out self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) self.dropout = nn.Dropout(dropout) # New self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) # New def forward(self, x): b, num_tokens, d_in = x.shape # New batch dimension b # For inputs where `num_tokens` exceeds `context_length`, this will result in errors # in the mask creation further below. # In practice, this is not a problem since the LLM (chapters 4-7) ensures that inputs # do not exceed `context_length` before reaching this forward method. keys = self.W_key(x) queries = self.W_query(x) values = self.W_value(x) attn_scores = queries @ keys.transpose(1, 2) # Changed transpose attn_scores.masked_fill_( # New, _ ops are in-place self.mask.bool()[:num_tokens, :num_tokens], -torch.inf) # `:num_tokens` to account for cases where the number of tokens in the batch is smaller than the supported context_size attn_weights = torch.softmax( attn_scores / keys.shape[-1]**0.5, dim=-1 ) attn_weights = self.dropout(attn_weights) # New context_vec = attn_weights @ values return context_vec class MultiHeadAttentionWrapper(nn.Module): def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): super().__init__() self.heads = nn.ModuleList( [CausalAttention(d_in, d_out, context_length, dropout, qkv_bias) for _ in range(num_heads)] ) def forward(self, x): return torch.cat([head(x) for head in self.heads], dim=-1) class MultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by n_heads" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs self.dropout = nn.Dropout(dropout) self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) def forward(self, x): b, num_tokens, d_in = x.shape keys = self.W_key(x) # Shape: (b, num_tokens, d_out) queries = self.W_query(x) values = self.W_value(x) # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) keys = keys.transpose(1, 2) queries = queries.transpose(1, 2) values = values.transpose(1, 2) # Compute scaled dot-product attention (aka self-attention) with a causal mask attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head # Original mask truncated to the number of tokens and converted to boolean mask_bool = self.mask.bool()[:num_tokens, :num_tokens] # Use the mask to fill attention scores attn_scores.masked_fill_(mask_bool, -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.reshape(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec ###################### # Bonus ###################### class PyTorchMultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, num_heads, dropout=0.0, qkv_bias=False): super().__init__() assert d_out % num_heads == 0, "d_out is indivisible by num_heads" self.num_heads = num_heads self.head_dim = d_out // num_heads self.d_out = d_out self.qkv = nn.Linear(d_in, 3 * d_out, bias=qkv_bias) self.proj = nn.Linear(d_out, d_out) self.dropout = dropout def forward(self, x): batch_size, num_tokens, embed_dim = x.shape # (b, num_tokens, embed_dim) --> (b, num_tokens, 3 * embed_dim) qkv = self.qkv(x) # (b, num_tokens, 3 * embed_dim) --> (b, num_tokens, 3, num_heads, head_dim) qkv = qkv.view(batch_size, num_tokens, 3, self.num_heads, self.head_dim) # (b, num_tokens, 3, num_heads, head_dim) --> (3, b, num_heads, num_tokens, head_dim) qkv = qkv.permute(2, 0, 3, 1, 4) # (3, b, num_heads, num_tokens, head_dim) -> 3 times (b, num_heads, num_tokens, head_dim) queries, keys, values = qkv use_dropout = 0. if not self.training else self.dropout context_vec = nn.functional.scaled_dot_product_attention( queries, keys, values, attn_mask=None, dropout_p=use_dropout, is_causal=True) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.transpose(1, 2).contiguous().view(batch_size, num_tokens, self.d_out) context_vec = self.proj(context_vec) return context_vec