# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch from llms_from_scratch.ch04 import generate_text_simple from llms_from_scratch.qwen3 import ( compute_rope_params, apply_rope, QWEN_CONFIG_06_B, RMSNorm, Qwen3Model, Qwen3Tokenizer ) from llms_from_scratch.kv_cache.qwen3 import Qwen3Model as Qwen3ModelKV from llms_from_scratch.kv_cache.generate import generate_text_simple as generate_text_simple_cached import importlib import pytest import tiktoken import torch import torch.nn as nn class Qwen3RMSNorm(nn.Module): # Source: https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen3/modeling_qwen3.py # License: Apache License, Version 2.0 (see file above) def __init__(self, hidden_size, eps=1e-6): """ Qwen3RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) print(input_dtype) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" transformers_installed = importlib.util.find_spec("transformers") is not None @pytest.mark.skipif(not transformers_installed, reason="transformers not installed") def test_rope(): from transformers.models.qwen3.modeling_qwen3 import Qwen3RotaryEmbedding, apply_rotary_pos_emb # Settings batch_size = 1 context_len = 8192 num_heads = 4 head_dim = 16 rope_theta = 1_000_000 # Instantiate RoPE parameters cos, sin = compute_rope_params( head_dim=head_dim, theta_base=rope_theta, context_length=context_len, ) # Dummy query and key tensors torch.manual_seed(123) queries = torch.randn(batch_size, num_heads, context_len, head_dim) keys = torch.randn(batch_size, num_heads, context_len, head_dim) # Apply rotary position embeddings queries_rot = apply_rope(queries, cos, sin) keys_rot = apply_rope(keys, cos, sin) # Generate reference RoPE via HF class RoPEConfig: rope_type = "qwen3" factor = 1.0 dim: int = head_dim rope_theta = 1_000_000 max_position_embeddings: int = 8192 hidden_size = head_dim * num_heads num_attention_heads = num_heads config = RoPEConfig() rot_emb = Qwen3RotaryEmbedding(config=config) position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0) ref_cos, ref_sin = rot_emb(queries, position_ids) ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin) torch.testing.assert_close(sin, ref_sin.squeeze(0)) torch.testing.assert_close(cos, ref_cos.squeeze(0)) torch.testing.assert_close(keys_rot, ref_keys_rot) torch.testing.assert_close(queries_rot, ref_queries_rot) @pytest.fixture(scope="session") def qwen3_weights_path(tmp_path_factory): """Creates and saves a deterministic Llama3 model for testing.""" path = tmp_path_factory.mktemp("models") / "llama3_test_weights.pt" if not path.exists(): torch.manual_seed(123) model = Qwen3Model(QWEN_CONFIG_06_B) torch.save(model.state_dict(), path) return path @pytest.mark.parametrize("ModelClass", [Qwen3Model, Qwen3ModelKV]) @pytest.mark.parametrize("generate_fn", [generate_text_simple, generate_text_simple_cached]) def test_model_variants(ModelClass, qwen3_weights_path, generate_fn): torch.manual_seed(123) model = ModelClass(QWEN_CONFIG_06_B) model.load_state_dict(torch.load(qwen3_weights_path)) model.eval() start_context = "Llamas eat" tokenizer = tiktoken.get_encoding("gpt2") encoded = tokenizer.encode(start_context) encoded_tensor = torch.tensor(encoded).unsqueeze(0) print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}") print("\nInput text:", start_context) print("Encoded input text:", encoded) print("encoded_tensor.shape:", encoded_tensor.shape) out = generate_text_simple( model=model, idx=encoded_tensor, max_new_tokens=5, context_size=QWEN_CONFIG_06_B["context_length"] ) print("Encoded output text:", out) expect = torch.tensor([ [43, 2543, 292, 4483, 115206, 459, 43010, 104223, 55553] ]) assert torch.equal(expect, out) def test_rmsnorm_equivalence(): torch.manual_seed(42) hidden_size = 64 batch_size = 8 seq_len = 16 rms_norm = RMSNorm(hidden_size) ref_norm = Qwen3RMSNorm(hidden_size) # Sync weights with torch.no_grad(): ref_norm.weight.copy_(ref_norm.weight) x = torch.randn(batch_size, seq_len, hidden_size) out1 = rms_norm(x) out2 = ref_norm(x) torch.testing.assert_close(out1, out2, atol=1e-5, rtol=1e-5) @pytest.mark.skipif(not transformers_installed, reason="transformers not installed") def test_tokenizer_equivalence(): from transformers import AutoTokenizer repo_id = "Qwen/Qwen3-0.6B" tokenizer_ref = AutoTokenizer.from_pretrained(repo_id) prompt = "Give me a short introduction to large language models." messages = [ {"role": "user", "content": prompt}, ] for states in ((True, True), (False, False)): tokenizer = Qwen3Tokenizer( tokenizer_file_path="Qwen3-0.6B/tokenizer.json", repo_id=repo_id, add_generation_prompt=states[0], add_thinking=states[1] ) input_token_ids = tokenizer.encode(prompt) input_token_ids_ref = tokenizer_ref.apply_chat_template( messages, tokenize=True, add_generation_prompt=states[0], enable_thinking=states[1], ) assert input_token_ids == input_token_ids_ref, states output_text = tokenizer.decode(input_token_ids) out_text_ref = tokenizer_ref.decode(input_token_ids_ref) assert output_text == out_text_ref, states