# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import os import time import urllib.request import matplotlib.pyplot as plt import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import tiktoken ##################################### # Chapter 2 ##################################### class GPTDatasetV1(Dataset): def __init__(self, txt, tokenizer, max_length, stride): self.input_ids = [] self.target_ids = [] # Tokenize the entire text token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"}) # Use a sliding window to chunk the book into overlapping sequences of max_length for i in range(0, len(token_ids) - max_length, stride): input_chunk = token_ids[i:i + max_length] target_chunk = token_ids[i + 1: i + max_length + 1] self.input_ids.append(torch.tensor(input_chunk)) self.target_ids.append(torch.tensor(target_chunk)) def __len__(self): return len(self.input_ids) def __getitem__(self, idx): return self.input_ids[idx], self.target_ids[idx] def create_dataloader_v1(txt, batch_size=4, max_length=256, stride=128, shuffle=True, drop_last=True, num_workers=0): # Initialize the tokenizer tokenizer = tiktoken.get_encoding("gpt2") # Create dataset dataset = GPTDatasetV1(txt, tokenizer, max_length, stride) # Create dataloader dataloader = DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers) return dataloader ##################################### # Chapter 3 ##################################### class MultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by n_heads" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs self.dropout = nn.Dropout(dropout) self.register_buffer("mask", torch.triu(torch.ones(context_length, context_length), diagonal=1)) def forward(self, x): b, num_tokens, d_in = x.shape keys = self.W_key(x) # Shape: (b, num_tokens, d_out) queries = self.W_query(x) values = self.W_value(x) # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) keys = keys.transpose(1, 2) queries = queries.transpose(1, 2) values = values.transpose(1, 2) # Compute scaled dot-product attention (aka self-attention) with a causal mask attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head # Original mask truncated to the number of tokens and converted to boolean mask_bool = self.mask.bool()[:num_tokens, :num_tokens] # Use the mask to fill attention scores attn_scores.masked_fill_(mask_bool, -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.reshape(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec ##################################### # Chapter 4 ##################################### class LayerNorm(nn.Module): def __init__(self, emb_dim): super().__init__() self.eps = 1e-5 self.scale = nn.Parameter(torch.ones(emb_dim)) self.shift = nn.Parameter(torch.zeros(emb_dim)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) var = x.var(dim=-1, keepdim=True, unbiased=False) norm_x = (x - mean) / torch.sqrt(var + self.eps) return self.scale * norm_x + self.shift class GELU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh( torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.layers = nn.Sequential( nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), GELU(), nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), ) def forward(self, x): return self.layers(x) class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = MultiHeadAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], context_length=cfg["context_length"], num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"]) self.ff = FeedForward(cfg) self.norm1 = LayerNorm(cfg["emb_dim"]) self.norm2 = LayerNorm(cfg["emb_dim"]) self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) def forward(self, x): # Shortcut connection for attention block shortcut = x x = self.norm1(x) x = self.att(x) # Shape [batch_size, num_tokens, emb_size] x = self.drop_shortcut(x) x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = self.drop_shortcut(x) x = x + shortcut # Add the original input back return x class GPTModel(nn.Module): def __init__(self, cfg): super().__init__() self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) self.drop_emb = nn.Dropout(cfg["drop_rate"]) self.trf_blocks = nn.Sequential( *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) self.final_norm = LayerNorm(cfg["emb_dim"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) def forward(self, in_idx): batch_size, seq_len = in_idx.shape tok_embeds = self.tok_emb(in_idx) pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] x = self.drop_emb(x) x = self.trf_blocks(x) x = self.final_norm(x) logits = self.out_head(x) return logits def generate_text_simple(model, idx, max_new_tokens, context_size): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): # Crop current context if it exceeds the supported context size # E.g., if LLM supports only 5 tokens, and the context size is 10 # then only the last 5 tokens are used as context idx_cond = idx[:, -context_size:] # Get the predictions with torch.no_grad(): logits = model(idx_cond) # Focus only on the last time step # (batch, n_token, vocab_size) becomes (batch, vocab_size) logits = logits[:, -1, :] # Get the idx of the vocab entry with the highest logits value idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) # Append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1) return idx ##################################### # Chapter 5 ##################################### def text_to_token_ids(text, tokenizer): encoded = tokenizer.encode(text) encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension return encoded_tensor def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension return tokenizer.decode(flat.tolist()) def calc_loss_batch(input_batch, target_batch, model, device): input_batch, target_batch = input_batch.to(device), target_batch.to(device) logits = model(input_batch) loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten()) return loss def calc_loss_loader(data_loader, model, device, num_batches=None): total_loss = 0. if len(data_loader) == 0: return float("nan") elif num_batches is None: num_batches = len(data_loader) else: num_batches = min(num_batches, len(data_loader)) for i, (input_batch, target_batch) in enumerate(data_loader): if i < num_batches: loss = calc_loss_batch(input_batch, target_batch, model, device) total_loss += loss.item() else: break return total_loss / num_batches def evaluate_model(model, train_loader, val_loader, device, eval_iter): model.eval() with torch.no_grad(): train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) model.train() return train_loss, val_loss def generate_and_print_sample(model, tokenizer, device, start_context): model.eval() context_size = model.pos_emb.weight.shape[0] encoded = text_to_token_ids(start_context, tokenizer).to(device) with torch.no_grad(): token_ids = generate_text_simple( model=model, idx=encoded, max_new_tokens=50, context_size=context_size ) decoded_text = token_ids_to_text(token_ids, tokenizer) print(decoded_text.replace("\n", " ")) # Compact print format model.train() def train_model_simple_with_timing(model, train_loader, val_loader, optimizer, device, num_epochs, eval_freq, eval_iter, start_context, tokenizer): train_losses, val_losses, track_tokens = [], [], [] total_tokens, global_step, last_tokens = 0, -1, 0 # Variables for cumulative average tokens/sec cumulative_tokens, cumulative_time = 0.0, 0.0 # CUDA-specific timing setup use_cuda = device.type == "cuda" if use_cuda: t_start = torch.cuda.Event(enable_timing=True) t_end = torch.cuda.Event(enable_timing=True) torch.cuda.synchronize() # Ensure all prior CUDA operations are done t_start.record() # Start the timer for the first interval else: t0 = time.time() # Start the timer for the first interval # Main training loop for epoch in range(num_epochs): model.train() for inp_batch, tgt_batch in train_loader: optimizer.zero_grad() global_step += 1 # Forward and backward pass loss = calc_loss_batch(inp_batch, tgt_batch, model, device) loss.backward() optimizer.step() total_tokens += inp_batch.numel() # At evaluation intervals, measure elapsed time and tokens per second if global_step % eval_freq == 0: # End timing for the current interval if use_cuda: t_end.record() torch.cuda.synchronize() # Wait for all CUDA ops to complete. elapsed = t_start.elapsed_time(t_end) / 1000 # Convert ms to seconds t_start.record() # Reset timer for the next interval else: elapsed = time.time() - t0 t0 = time.time() # Reset timer for the next interval # Calculate tokens processed in this interval tokens_interval = total_tokens - last_tokens last_tokens = total_tokens tps = tokens_interval / elapsed if elapsed > 0 else 0 # Tokens per second # Update cumulative counters (skip the first evaluation interval) if global_step: # This is False only when global_step == 0 (first evaluation) cumulative_tokens += tokens_interval cumulative_time += elapsed # Compute cumulative average tokens/sec (excluding the first interval) avg_tps = cumulative_tokens / cumulative_time if cumulative_time > 0 else 0 # Evaluate model performance (this may add overhead) train_loss, val_loss = evaluate_model(model, train_loader, val_loader, device, eval_iter) train_losses.append(train_loss) val_losses.append(val_loss) track_tokens.append(total_tokens) print(f"Ep {epoch+1}, Step {global_step:06d}, " f"Train: {train_loss:.3f}, Val: {val_loss:.3f}, " f"Step tok/sec: {round(tps)}, Avg tok/sec: {round(avg_tps)}") generate_and_print_sample(model, tokenizer, device, start_context) # Memory stats if torch.cuda.is_available(): device = torch.cuda.current_device() allocated = torch.cuda.memory_allocated(device) / 1024**3 # Convert to GB reserved = torch.cuda.memory_reserved(device) / 1024**3 # Convert to GB print(f"\nAllocated memory: {allocated:.4f} GB") print(f"Reserved memory: {reserved:.4f} GB\n") return train_losses, val_losses, track_tokens def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses): fig, ax1 = plt.subplots() # Plot training and validation loss against epochs ax1.plot(epochs_seen, train_losses, label="Training loss") ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss") ax1.set_xlabel("Epochs") ax1.set_ylabel("Loss") ax1.legend(loc="upper right") # Create a second x-axis for tokens seen ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks ax2.set_xlabel("Tokens seen") fig.tight_layout() # Adjust layout to make room # plt.show() ##################################### # Main function calls ##################################### def main(gpt_config, settings): torch.manual_seed(123) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"PyTorch version: {torch.__version__}") print(f"Using {device}") if torch.cuda.is_available(): print(f"CUDA version: {torch.version.cuda}") print() ############################## # Download data if necessary ############################## file_path = "middlemarch.txt" url = "https://www.gutenberg.org/cache/epub/145/pg145.txt" if not os.path.exists(file_path): with urllib.request.urlopen(url) as response: text_data = response.read().decode('utf-8') with open(file_path, "w", encoding="utf-8") as file: file.write(text_data) else: with open(file_path, "r", encoding="utf-8") as file: text_data = file.read() ############################## # Initialize model ############################## model = GPTModel(gpt_config) model.to(device) # no assignment model = model.to(device) necessary for nn.Module classes optimizer = torch.optim.AdamW( model.parameters(), lr=settings["learning_rate"], weight_decay=settings["weight_decay"] ) ############################## # Set up dataloaders ############################## # Train/validation ratio train_ratio = 0.90 split_idx = int(train_ratio * len(text_data)) train_loader = create_dataloader_v1( text_data[:split_idx], batch_size=settings["batch_size"], max_length=gpt_config["context_length"], stride=gpt_config["context_length"], drop_last=True, shuffle=True, num_workers=4 ) val_loader = create_dataloader_v1( text_data[split_idx:], batch_size=settings["batch_size"], max_length=gpt_config["context_length"], stride=gpt_config["context_length"], drop_last=False, shuffle=False, num_workers=4 ) ############################## # Train model ############################## tokenizer = tiktoken.get_encoding("gpt2") train_losses, val_losses, tokens_seen = train_model_simple_with_timing( model=model, train_loader=train_loader, val_loader=val_loader, optimizer=optimizer, device=device, num_epochs=settings["num_epochs"], eval_freq=15, eval_iter=1, start_context="Every effort moves you", tokenizer=tokenizer ) return train_losses, val_losses, tokens_seen, model if __name__ == "__main__": GPT_CONFIG_124M = { "vocab_size": 50257, # Vocabulary size "context_length": 1024, # Input tokens per training example "emb_dim": 768, # Embedding dimension "n_heads": 12, # Number of attention heads "n_layers": 12, # Number of layers "drop_rate": 0.1, # Dropout rate "qkv_bias": False # Query-key-value bias } OTHER_SETTINGS = { "learning_rate": 5e-4, "num_epochs": 15, "batch_size": 8, "weight_decay": 0.1 } ########################### # Initiate training ########################### train_losses, val_losses, tokens_seen, model = main(GPT_CONFIG_124M, OTHER_SETTINGS) ########################### # After training ########################### # Plot results epochs_tensor = torch.linspace(0, OTHER_SETTINGS["num_epochs"], len(train_losses)) plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses) plt.savefig("loss.pdf") # Save and load model # torch.save(model.state_dict(), "model.pth") # model = GPTModel(GPT_CONFIG_124M) # model.load_state_dict(torch.load("model.pth", weights_only=True))