# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import os import requests import json import numpy as np import tensorflow as tf from tqdm import tqdm def download_and_load_gpt2(model_size, models_dir): # Validate model size allowed_sizes = ("124M", "355M", "774M", "1558M") if model_size not in allowed_sizes: raise ValueError(f"Model size not in {allowed_sizes}") # Define paths model_dir = os.path.join(models_dir, model_size) base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" filenames = [ "checkpoint", "encoder.json", "hparams.json", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "vocab.bpe" ] # Download files os.makedirs(model_dir, exist_ok=True) for filename in filenames: file_url = os.path.join(base_url, model_size, filename) file_path = os.path.join(model_dir, filename) download_file(file_url, file_path) # Load settings and params tf_ckpt_path = tf.train.latest_checkpoint(model_dir) settings = json.load(open(os.path.join(model_dir, "hparams.json"))) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) return settings, params def download_file(url, destination): # Send a GET request to download the file in streaming mode response = requests.get(url, stream=True) # Get the total file size from headers, defaulting to 0 if not present file_size = int(response.headers.get("content-length", 0)) # Check if file exists and has the same size if os.path.exists(destination): file_size_local = os.path.getsize(destination) if file_size == file_size_local: print(f"File already exists and is up-to-date: {destination}") return # Define the block size for reading the file block_size = 1024 # 1 Kilobyte # Initialize the progress bar with total file size progress_bar_description = url.split("/")[-1] # Extract filename from URL with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: # Open the destination file in binary write mode with open(destination, "wb") as file: # Iterate over the file data in chunks for chunk in response.iter_content(block_size): progress_bar.update(len(chunk)) # Update progress bar file.write(chunk) # Write the chunk to the file def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): # Initialize parameters dictionary with empty blocks for each layer params = {"blocks": [{} for _ in range(settings["n_layer"])]} # Iterate over each variable in the checkpoint for name, _ in tf.train.list_variables(ckpt_path): # Load the variable and remove singleton dimensions variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) # Process the variable name to extract relevant parts variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix # Identify the target dictionary for the variable target_dict = params if variable_name_parts[0].startswith("h"): layer_number = int(variable_name_parts[0][1:]) target_dict = params["blocks"][layer_number] # Recursively access or create nested dictionaries for key in variable_name_parts[1:-1]: target_dict = target_dict.setdefault(key, {}) # Assign the variable array to the last key last_key = variable_name_parts[-1] target_dict[last_key] = variable_array return params