# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import json import numpy as np import os import urllib.request # import requests import tensorflow as tf import tiktoken import torch from tqdm import tqdm # Import from local files from previous_chapters import GPTModel def text_to_token_ids(text, tokenizer): encoded = tokenizer.encode(text) encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension return encoded_tensor def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension return tokenizer.decode(flat.tolist()) def download_and_load_gpt2(model_size, models_dir): # Validate model size allowed_sizes = ("124M", "355M", "774M", "1558M") if model_size not in allowed_sizes: raise ValueError(f"Model size not in {allowed_sizes}") # Define paths model_dir = os.path.join(models_dir, model_size) base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" filenames = [ "checkpoint", "encoder.json", "hparams.json", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "vocab.bpe" ] # Download files os.makedirs(model_dir, exist_ok=True) for filename in filenames: file_url = os.path.join(base_url, model_size, filename) file_path = os.path.join(model_dir, filename) download_file(file_url, file_path) # Load settings and params tf_ckpt_path = tf.train.latest_checkpoint(model_dir) settings = json.load(open(os.path.join(model_dir, "hparams.json"))) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) return settings, params """ def download_file(url, destination): # Send a GET request to download the file in streaming mode response = requests.get(url, stream=True) # Get the total file size from headers, defaulting to 0 if not present file_size = int(response.headers.get("content-length", 0)) # Check if file exists and has the same size if os.path.exists(destination): file_size_local = os.path.getsize(destination) if file_size == file_size_local: print(f"File already exists and is up-to-date: {destination}") return # Define the block size for reading the file block_size = 1024 # 1 Kilobyte # Initialize the progress bar with total file size progress_bar_description = url.split("/")[-1] # Extract filename from URL with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: # Open the destination file in binary write mode with open(destination, "wb") as file: # Iterate over the file data in chunks for chunk in response.iter_content(block_size): progress_bar.update(len(chunk)) # Update progress bar file.write(chunk) # Write the chunk to the file """ def download_file(url, destination): # Send a GET request to download the file with urllib.request.urlopen(url) as response: # Get the total file size from headers, defaulting to 0 if not present file_size = int(response.headers.get("Content-Length", 0)) # Check if file exists and has the same size if os.path.exists(destination): file_size_local = os.path.getsize(destination) if file_size == file_size_local: print(f"File already exists and is up-to-date: {destination}") return # Define the block size for reading the file block_size = 1024 # 1 Kilobyte # Initialize the progress bar with total file size progress_bar_description = os.path.basename(url) # Extract filename from URL with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: # Open the destination file in binary write mode with open(destination, "wb") as file: # Read the file in chunks and write to destination while True: chunk = response.read(block_size) if not chunk: break file.write(chunk) progress_bar.update(len(chunk)) # Update progress bar def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): # Initialize parameters dictionary with empty blocks for each layer params = {"blocks": [{} for _ in range(settings["n_layer"])]} # Iterate over each variable in the checkpoint for name, _ in tf.train.list_variables(ckpt_path): # Load the variable and remove singleton dimensions variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) # Process the variable name to extract relevant parts variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix # Identify the target dictionary for the variable target_dict = params if variable_name_parts[0].startswith("h"): layer_number = int(variable_name_parts[0][1:]) target_dict = params["blocks"][layer_number] # Recursively access or create nested dictionaries for key in variable_name_parts[1:-1]: target_dict = target_dict.setdefault(key, {}) # Assign the variable array to the last key last_key = variable_name_parts[-1] target_dict[last_key] = variable_array return params def assign(left, right): if left.shape != right.shape: raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}") return torch.nn.Parameter(torch.tensor(right)) def load_weights_into_gpt(gpt, params): gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params["wpe"]) gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params["wte"]) for b in range(len(params["blocks"])): q_w, k_w, v_w = np.split( (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1) gpt.trf_blocks[b].att.W_query.weight = assign( gpt.trf_blocks[b].att.W_query.weight, q_w.T) gpt.trf_blocks[b].att.W_key.weight = assign( gpt.trf_blocks[b].att.W_key.weight, k_w.T) gpt.trf_blocks[b].att.W_value.weight = assign( gpt.trf_blocks[b].att.W_value.weight, v_w.T) q_b, k_b, v_b = np.split( (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1) gpt.trf_blocks[b].att.W_query.bias = assign( gpt.trf_blocks[b].att.W_query.bias, q_b) gpt.trf_blocks[b].att.W_key.bias = assign( gpt.trf_blocks[b].att.W_key.bias, k_b) gpt.trf_blocks[b].att.W_value.bias = assign( gpt.trf_blocks[b].att.W_value.bias, v_b) gpt.trf_blocks[b].att.out_proj.weight = assign( gpt.trf_blocks[b].att.out_proj.weight, params["blocks"][b]["attn"]["c_proj"]["w"].T) gpt.trf_blocks[b].att.out_proj.bias = assign( gpt.trf_blocks[b].att.out_proj.bias, params["blocks"][b]["attn"]["c_proj"]["b"]) gpt.trf_blocks[b].ff.layers[0].weight = assign( gpt.trf_blocks[b].ff.layers[0].weight, params["blocks"][b]["mlp"]["c_fc"]["w"].T) gpt.trf_blocks[b].ff.layers[0].bias = assign( gpt.trf_blocks[b].ff.layers[0].bias, params["blocks"][b]["mlp"]["c_fc"]["b"]) gpt.trf_blocks[b].ff.layers[2].weight = assign( gpt.trf_blocks[b].ff.layers[2].weight, params["blocks"][b]["mlp"]["c_proj"]["w"].T) gpt.trf_blocks[b].ff.layers[2].bias = assign( gpt.trf_blocks[b].ff.layers[2].bias, params["blocks"][b]["mlp"]["c_proj"]["b"]) gpt.trf_blocks[b].norm1.scale = assign( gpt.trf_blocks[b].norm1.scale, params["blocks"][b]["ln_1"]["g"]) gpt.trf_blocks[b].norm1.shift = assign( gpt.trf_blocks[b].norm1.shift, params["blocks"][b]["ln_1"]["b"]) gpt.trf_blocks[b].norm2.scale = assign( gpt.trf_blocks[b].norm2.scale, params["blocks"][b]["ln_2"]["g"]) gpt.trf_blocks[b].norm2.shift = assign( gpt.trf_blocks[b].norm2.shift, params["blocks"][b]["ln_2"]["b"]) gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"]) gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"]) gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"]) def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None): # For-loop is the same as before: Get logits, and only focus on last time step for _ in range(max_new_tokens): idx_cond = idx[:, -context_size:] with torch.no_grad(): logits = model(idx_cond) logits = logits[:, -1, :] # New: Filter logits with top_k sampling if top_k is not None: # Keep only top_k values top_logits, _ = torch.topk(logits, top_k) min_val = top_logits[:, -1] logits = torch.where(logits < min_val, torch.tensor(float("-inf")).to(logits.device), logits) # New: Apply temperature scaling if temperature > 0.0: logits = logits / temperature # Apply softmax to get probabilities probs = torch.softmax(logits, dim=-1) # (batch_size, context_len) # Sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1) # Otherwise same as before: get idx of the vocab entry with the highest logits value else: idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1) if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified break # Same as before: append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1) return idx def main(gpt_config, input_prompt, model_size): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2") gpt = GPTModel(gpt_config) load_weights_into_gpt(gpt, params) gpt.to(device) gpt.eval() tokenizer = tiktoken.get_encoding("gpt2") torch.manual_seed(123) token_ids = generate( model=gpt, idx=text_to_token_ids(input_prompt, tokenizer).to(device), max_new_tokens=25, context_size=gpt_config["context_length"], top_k=50, temperature=1.0 ) print("Output text:\n", token_ids_to_text(token_ids, tokenizer)) if __name__ == "__main__": torch.manual_seed(123) CHOOSE_MODEL = "gpt2-small (124M)" INPUT_PROMPT = "Every effort moves you" BASE_CONFIG = { "vocab_size": 50257, # Vocabulary size "context_length": 1024, # Context length "drop_rate": 0.0, # Dropout rate "qkv_bias": True # Query-key-value bias } model_configs = { "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12}, "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16}, "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20}, "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25}, } model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")") BASE_CONFIG.update(model_configs[CHOOSE_MODEL]) main(BASE_CONFIG, INPUT_PROMPT, model_size)