{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "1E_HhLEeYqFG" }, "source": [ "\n", "\n", "\n", "\n", "\n", "
\n", "\n", "Supplementary code for the Build a Large Language Model From Scratch book by Sebastian Raschka
\n", "
Code repository: https://github.com/rasbt/LLMs-from-scratch\n", "
\n", "
\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "ZuWudYFWYiH7" }, "source": [ "# Memory-efficient Model Weight Loading" ] }, { "cell_type": "markdown", "metadata": { "id": "qt0Qyg6ewUt6" }, "source": [ "- This notebook provides tips for loading larger pretrained or finetuned models when GPU (or CPU) memory is limited\n", "- Specifically, it focuses on cases where you saved the model using `torch.save(model.state_dict(), \"model.pth\")` (for example, in chapters 5-7) and want to load it in a new session later for continued pretraining or additional finetuning\n", "- While the example uses an LLM, the methods explained in this notebook are general and apply to loading any PyTorch model, not just LLMs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SxQzFoS-IXdY", "outputId": "b28ebfbd-9036-4696-d95a-7f96fdf29919" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "memory_profiler version: 0.61.0\n", "torch version: 2.4.1+cu121\n" ] } ], "source": [ "from importlib.metadata import version\n", "\n", "pkgs = [\n", " \"torch\",\n", "]\n", "for p in pkgs:\n", " print(f\"{p} version: {version(p)}\")" ] }, { "cell_type": "markdown", "metadata": { "id": "y47iQaQKyHap" }, "source": [ " \n", "## 1. Benchmark utilities" ] }, { "cell_type": "markdown", "metadata": { "id": "nQeOEoo6yT0X" }, "source": [ "- First, let's define some utility code to track VRAM (GPU memory)\n", "- Later, we will also introduce a tool to track the main system RAM (CPU memory)\n", "- The purpose of these functions will become clear when we apply them later" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "pEiqjYrVivgt" }, "outputs": [], "source": [ "import gc\n", "import time\n", "import torch\n", "\n", "\n", "def start_memory_tracking():\n", " \"\"\"Initialize GPU memory tracking.\"\"\"\n", " if torch.cuda.is_available():\n", " torch.cuda.reset_peak_memory_stats()\n", " else:\n", " print(\"This notebook is intended for CUDA GPUs but CUDA is not available.\")\n", "\n", "def print_memory_usage():\n", " max_gpu_memory = torch.cuda.max_memory_allocated() / (1024 ** 3) # Convert bytes to GB\n", " print(f\"Maximum GPU memory allocated: {max_gpu_memory:.1f} GB\")\n", "\n", "def cleanup():\n", " gc.collect()\n", " torch.cuda.empty_cache()\n", " time.sleep(3) # some buffer time to allow memory to clear\n", " torch.cuda.reset_peak_memory_stats()\n", " max_memory_allocated = torch.cuda.max_memory_allocated(device) / (1024 ** 3)\n", " print(f\"Maximum GPU memory allocated: {max_memory_allocated:.1f} GB\")" ] }, { "cell_type": "markdown", "metadata": { "id": "z5oJwoc-kkXs" }, "source": [ " \n", "## 2. Model setup" ] }, { "cell_type": "markdown", "metadata": { "id": "YfJE0vnMyr88" }, "source": [ "- This code section sets up the model itself\n", "- Here, we use the \"large\" GPT-2 model to make things more interesting (you may use the \"gpt2-small (124M)\" to lower the memory requirements and execution time of this notebook)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "tMuhCYaVI0w7" }, "outputs": [], "source": [ "from previous_chapters import GPTModel\n", "\n", "\n", "BASE_CONFIG = {\n", " \"vocab_size\": 50257, # Vocabulary size\n", " \"context_length\": 1024, # Context length\n", " \"drop_rate\": 0.0, # Dropout rate\n", " \"qkv_bias\": True # Query-key-value bias\n", "}\n", "\n", "model_configs = {\n", " \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n", " \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n", " \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n", " \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n", "}\n", "\n", "CHOOSE_MODEL = \"gpt2-xl (1558M)\"\n", "\n", "BASE_CONFIG.update(model_configs[CHOOSE_MODEL])" ] }, { "cell_type": "markdown", "metadata": { "id": "KWYoo1z5y8aX" }, "source": [ "- Now, let's see the GPU memory functions in action:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GK3NEA3eJv3f", "outputId": "60573d6e-c603-45e7-8283-b1e92e2a0013" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 6.4 GB\n" ] } ], "source": [ "start_memory_tracking()\n", "\n", "\n", "model = GPTModel(BASE_CONFIG)\n", "device = torch.device(\"cuda\")\n", "model.to(device)\n", "\n", "print_memory_usage()" ] }, { "cell_type": "markdown", "metadata": { "id": "GIhwBEBxzBsF" }, "source": [ "- Additionally, let's make sure that the model runs okay by passing in some example tensor" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "i_j6nZruUd7g" }, "outputs": [], "source": [ "# Test if the model works (no need to track memory here)\n", "test_input = torch.tensor([[1, 2, 3]]).to(device)\n", "model.eval()\n", "\n", "with torch.no_grad():\n", " model(test_input)" ] }, { "cell_type": "markdown", "metadata": { "id": "UgNb8c32zh4g" }, "source": [ "- Next, imagine we were pretraining the model and saving it for later use\n", "- We skip the actual pretraining here for simplicity and just save the initialized model (but the same concept applies)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "wUIXjcsimXU7" }, "outputs": [], "source": [ "# Training code would go here...\n", "\n", "model.train()\n", "torch.save(model.state_dict(), \"model.pth\")" ] }, { "cell_type": "markdown", "metadata": { "id": "s9tBS4HUzz1g" }, "source": [ "- Lastly, we delete the model and example tensor in the Python session to reset the GPU memory" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "SqmTzztqKnTs", "outputId": "1198afb9-2d97-4b6a-9bdb-41551f25749d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 0.0 GB\n" ] } ], "source": [ "del model, test_input\n", "cleanup()" ] }, { "cell_type": "markdown", "metadata": { "id": "7EnO8beUJ6Sb" }, "source": [ " \n", "## 3. Weight loading" ] }, { "cell_type": "markdown", "metadata": { "id": "JtAXKjsG0AVL" }, "source": [ "- Now begins the interesting part where we load the pretrained model weights\n", "- Let's see how much GPU memory is required to load the previously saved model" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "wCrQNbSJJO9w", "outputId": "9b203868-a8ef-4011-fc2b-611cc0d10994" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 12.8 GB\n" ] } ], "source": [ "# Then load pretrained weights\n", "\n", "start_memory_tracking()\n", "\n", "model = GPTModel(BASE_CONFIG)\n", "model.to(device)\n", "\n", "model.load_state_dict(\n", " torch.load(\"model.pth\", map_location=device, weights_only=True)\n", ")\n", "model.to(device)\n", "model.eval();\n", "\n", "print_memory_usage()" ] }, { "cell_type": "markdown", "metadata": { "id": "4AGvOrcN0KdJ" }, "source": [ "- Notice that the memory is 2x as large as in the previous session\n", "- This is because we have the same model in memory twice, for a short period of time:\n", " - The first time via `model.to(device)`\n", " - The second time via the code line `model.load_state_dict(torch.load(\"model.pth\", map_location=device, weights_only=True))`; eventually, the loaded model weights will be copied into the model, and the `state_dict` will be discarded, but for a brief amount of time, we have both the main model and the loaded `state_dict` in memory\n", "- The remaining sections focus on addressing this\n", "- But first, let's test the model and reset the GPU memory\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "DvlUn-nmmbuj", "outputId": "11d3ab68-f570-4c1e-c631-fe5547026799" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 0.0 GB\n" ] } ], "source": [ "# Test if the model works (no need to track memory here)\n", "test_input = torch.tensor([[1, 2, 3]]).to(device)\n", "model.eval()\n", "\n", "with torch.no_grad():\n", " model(test_input)\n", "\n", "del model, test_input\n", "cleanup()" ] }, { "cell_type": "markdown", "metadata": { "id": "RdPnW3iLLrjX" }, "source": [ " \n", "## 4. Loading weights sequentially" ] }, { "cell_type": "markdown", "metadata": { "id": "FYqtUON602TD" }, "source": [ "- One workaround for the problem of having the model weights in GPU memory twice, as highlighted in the previous section, is to load the model sequentially\n", "- Below, we:\n", " - first load the model into GPU memory\n", " - then load the model weights into CPU memory\n", " - and finally copy each parameter one by one into GPU memory\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "DOIGTNWTmx9G", "outputId": "145162e6-aaa6-4c2a-ed8f-f1cf068adb80" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 6.4 GB\n", "Maximum GPU memory allocated: 6.7 GB\n" ] } ], "source": [ "start_memory_tracking()\n", "\n", "model = GPTModel(BASE_CONFIG).to(device)\n", "\n", "state_dict = torch.load(\"model.pth\", map_location=\"cpu\", weights_only=True)\n", "\n", "print_memory_usage()\n", "\n", "# Sequentially copy weights to the model's parameters\n", "with torch.no_grad():\n", " for name, param in model.named_parameters():\n", " if name in state_dict:\n", " param.copy_(state_dict[name].to(device))\n", " else:\n", " print(f\"Warning: {name} not found in state_dict.\")\n", "\n", "print_memory_usage()" ] }, { "cell_type": "markdown", "metadata": { "id": "Pn9xD_xL1ZzM" }, "source": [ "- As we can see above, the memory usage is much lower than before\n", "- Notice that the memory increases from 6.4 to 6.7 GB because initially, we only have the model in memory, and then we have the model plus 1 parameter tensor in memory (we temporarily move the parameter tensor to the GPU so we can assign it using `\".to\"` the model)\n", "- Overall, this is a significant improvement\n", "- Again, let's briefly test the model and then reset the GPU memory for the next section" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "PRHnjA48nJgw", "outputId": "dcd6b1b2-538f-4862-96a6-a5fcbf3326a4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 0.0 GB\n" ] } ], "source": [ "# Test if the model works (no need to track memory here)\n", "test_input = torch.tensor([[1, 2, 3]]).to(device)\n", "model.eval()\n", "\n", "with torch.no_grad():\n", " model(test_input)\n", "\n", "del model, test_input, state_dict, param\n", "cleanup()" ] }, { "cell_type": "markdown", "metadata": { "id": "5M92LK7usb-Z" }, "source": [ " \n", "## 5. Loading the model with low CPU memory" ] }, { "cell_type": "markdown", "metadata": { "id": "R45qgeB613e2" }, "source": [ "- In the previous session, we reduced GPU memory use by loading the weights (`state_dict`) into CPU memory first before copying them one-by-one into the model\n", "- However, what do we do if we have limited CPU memory?\n", "- This section uses PyTorch's so-called `\"meta\"` device approach to load a model on machines with large GPU memory but small CPU memory\n", "- But first, let's define a convenience function to monitor CPU memory" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "BrcWy0q-3Bbe" }, "outputs": [], "source": [ "import os\n", "import psutil\n", "from threading import Thread\n", "\n", "\n", "def memory_usage_in_gb(func, *args, **kwargs):\n", " process = psutil.Process(os.getpid())\n", "\n", " # Measure the baseline memory usage before running the function\n", " baseline_mem = process.memory_info().rss / 1024 ** 3 # in GB\n", "\n", " # Start monitoring memory in a separate thread\n", " mem_usage = []\n", " done = False\n", "\n", " def monitor_memory():\n", " while not done:\n", " mem_usage.append(process.memory_info().rss / 1024 ** 3) # Convert to GB\n", " time.sleep(0.1)\n", "\n", " t = Thread(target=monitor_memory)\n", " t.start()\n", "\n", " # Run the function\n", " func(*args, **kwargs)\n", "\n", " # Stop monitoring\n", " done = True\n", " t.join()\n", "\n", " peak_mem_usage_gb = max(mem_usage) - baseline_mem\n", " return peak_mem_usage_gb\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Ayy30Ytd5hjF" }, "source": [ "- To start with, let's track the CPU memory of the sequential weight loading approach from the previous section" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rCkV6IbQtpVn", "outputId": "26c0435a-1e3d-4e8f-fbe2-f9655bad61b4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 6.4 GB\n", "Maximum GPU memory allocated: 6.7 GB\n", "-> Maximum CPU memory allocated: 6.3 GB\n" ] } ], "source": [ "def load_sequentially():\n", " start_memory_tracking()\n", "\n", " model = GPTModel(BASE_CONFIG).to(device)\n", "\n", " state_dict = torch.load(\"model.pth\", map_location=\"cpu\", weights_only=True)\n", "\n", " print_memory_usage()\n", "\n", " # Sequentially copy weights to the model's parameters\n", " with torch.no_grad():\n", " for name, param in model.named_parameters():\n", " if name in state_dict:\n", " param.copy_(state_dict[name].to(device))\n", " else:\n", " print(f\"Warning: {name} not found in state_dict.\")\n", "\n", " print_memory_usage()\n", "\n", "\n", "peak_memory_used = memory_usage_in_gb(load_sequentially)\n", "print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")" ] }, { "cell_type": "markdown", "metadata": { "id": "UWrmnCML5oKy" }, "source": [ "- Now, suppose we have a machine with low CPU memory but large GPU memory\n", "- We can trade off CPU memory and GPU memory usage by introducing PyTorch's so-called \"meta\" device\n", "- PyTorch's meta device is a special device type that allows you to create tensors without allocating actual memory for their data, effectively creating \"meta\" tensors\n", "- This is useful for tasks like model analysis or architecture definition, where you need tensor shapes and types without the overhead of memory allocation" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "PBErC_5Yt8ly", "outputId": "8799db06-191c-47c4-92fa-fbb95d685aa9" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 12.8 GB\n", "Maximum GPU memory allocated: 12.8 GB\n", "-> Maximum CPU memory allocated: 1.3 GB\n" ] } ], "source": [ "def load_sequentially_with_meta():\n", " start_memory_tracking()\n", "\n", " with torch.device(\"meta\"):\n", " model = GPTModel(BASE_CONFIG)\n", "\n", " model = model.to_empty(device=device)\n", "\n", " state_dict = torch.load(\"model.pth\", map_location=device, weights_only=True)\n", "\n", " print_memory_usage()\n", "\n", " # Sequentially copy weights to the model's parameters\n", " with torch.no_grad():\n", " for name, param in model.named_parameters():\n", " if name in state_dict:\n", " param.copy_(state_dict[name])\n", " else:\n", " print(f\"Warning: {name} not found in state_dict.\")\n", "\n", " print_memory_usage()\n", "\n", "peak_memory_used = memory_usage_in_gb(load_sequentially_with_meta)\n", "print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")" ] }, { "cell_type": "markdown", "metadata": { "id": "VpnCABp75-VQ" }, "source": [ "- As we can see above, by creating the model on the meta-device and loading the weights directly into GPU memory, we effectively reduced the CPU memory requirements\n", "- One might ask: \"Is the sequential weight loading still necessary then, and how does that compare to the original approach?\"\n", "- Let's check the simple PyTorch weight loading approach for comparison (from the first weight loading section in this notebook):" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "4f-bqBNRuR39", "outputId": "f7c0a901-b404-433a-9b93-2bbfa8183c56" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 12.8 GB\n", "-> Maximum CPU memory allocated: 4.4 GB\n" ] } ], "source": [ "def baseline():\n", " start_memory_tracking()\n", "\n", " model = GPTModel(BASE_CONFIG)\n", " model.to(device)\n", "\n", " model.load_state_dict(torch.load(\"model.pth\", map_location=device, weights_only=True))\n", " model.to(device)\n", " model.eval();\n", "\n", " print_memory_usage()\n", "\n", "peak_memory_used = memory_usage_in_gb(baseline)\n", "print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")" ] }, { "cell_type": "markdown", "metadata": { "id": "NKAjxbX86xnb" }, "source": [ "- As we can see above, the \"simple\" weight loading without the meta device uses more memory\n", "- In other words, if you have a machine with limited CPU memory, you can use the meta device approach to directly load the model weights into GPU memory to reduce peak CPU memory usage" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " \n", "## 6. Using `mmap=True` (recommmended)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- As an intermediate or advanced `torch.load` user, you may wonder how these approaches compare to the `mmap=True` setting in PyTorch\n", "- The `mmap=True` setting in PyTorch enables memory-mapped file I/O, which allows the tensor to access data directly from disk storage, thus reducing memory usage by not loading the entire file into RAM if RAM is limited\n", "- Also, see the helpful comment by [mikaylagawarecki](https://github.com/rasbt/LLMs-from-scratch/issues/402)\n", "- At first glance, it may look less efficient than the sequential approaches above:" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "GKwV0AMNemuR", "outputId": "e207f2bf-5c87-498e-80fe-e8c4016ac711" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 6.4 GB\n", "-> Maximum CPU memory allocated: 5.9 GB\n" ] } ], "source": [ "def best_practices():\n", " with torch.device(\"meta\"):\n", " model = GPTModel(BASE_CONFIG)\n", "\n", " model.load_state_dict(\n", " torch.load(\"model.pth\", map_location=device, weights_only=True, mmap=True),\n", " assign=True\n", " )\n", "\n", " print_memory_usage()\n", "\n", "peak_memory_used = memory_usage_in_gb(best_practices)\n", "print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- The reason why the CPU RAM usage is so high is that there's enough CPU RAM available on this machine\n", "- However, if you were to run this on a machine with limited CPU RAM, the `mmap` approach would use less memory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " \n", "## 7. Other methods" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- This notebook is focused on simple, built-in methods for loading weights in PyTorch\n", "- The recommended approach for limited CPU memory cases is the `mmap=True` approach explained enough\n", "- Alternatively, one other option is a brute-force approach that saves and loads each weight tensor separately:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "2CgPEZUIb00w" }, "outputs": [], "source": [ "model = GPTModel(BASE_CONFIG)\n", "# Assume `model` is your trained model\n", "state_dict = model.state_dict()\n", "\n", "# Create a directory to store individual parameter files\n", "os.makedirs(\"model_parameters\", exist_ok=True)\n", "\n", "# Save each parameter tensor separately\n", "for name, param in state_dict.items():\n", " torch.save(param.cpu(), f\"model_parameters/{name}.pt\")\n", "\n", "del model" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gTsmtJK-b4yy", "outputId": "d361e2d3-e34c-48d7-9047-846c9bfd291e" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum GPU memory allocated: 6.4 GB\n", "Maximum GPU memory allocated: 6.4 GB\n", "-> Maximum CPU memory allocated: 0.3 GB\n" ] } ], "source": [ "def load_individual_weights():\n", "\n", " start_memory_tracking()\n", "\n", " with torch.device(\"meta\"):\n", " model = GPTModel(BASE_CONFIG)\n", "\n", " model = model.to_empty(device=device)\n", "\n", " print_memory_usage()\n", " param_dir = \"model_parameters\"\n", "\n", " with torch.no_grad():\n", " for name, param in model.named_parameters():\n", " weight_path = os.path.join(param_dir, f\"{name}.pt\")\n", " if os.path.exists(weight_path):\n", " param_data = torch.load(weight_path, map_location=\"cpu\", weights_only=True)\n", " param.copy_(param_data)\n", " del param_data # Free memory\n", " else:\n", " print(f\"Warning: {name} not found in {param_dir}.\")\n", "\n", " print_memory_usage()\n", "\n", "\n", "peak_memory_used = memory_usage_in_gb(load_individual_weights)\n", "print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")" ] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "L4", "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 4 }