# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch # # This file collects all the relevant code that we covered thus far # throughout Chapters 2-5. import json import os import urllib import numpy as np import tensorflow as tf import torch import torch.nn as nn from tqdm import tqdm ##################################### # Chapter 3 ##################################### class MultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by n_heads" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs self.dropout = nn.Dropout(dropout) self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) def forward(self, x): b, num_tokens, d_in = x.shape keys = self.W_key(x) # Shape: (b, num_tokens, d_out) queries = self.W_query(x) values = self.W_value(x) # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) keys = keys.view(b, num_tokens, self.num_heads, self.head_dim) values = values.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) keys = keys.transpose(1, 2) queries = queries.transpose(1, 2) values = values.transpose(1, 2) # Compute scaled dot-product attention (aka self-attention) with a causal mask attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head # Original mask truncated to the number of tokens and converted to boolean mask_bool = self.mask.bool()[:num_tokens, :num_tokens] # Use the mask to fill attention scores attn_scores.masked_fill_(mask_bool, -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.reshape(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec ##################################### # Chapter 4 ##################################### class LayerNorm(nn.Module): def __init__(self, emb_dim): super().__init__() self.eps = 1e-5 self.scale = nn.Parameter(torch.ones(emb_dim)) self.shift = nn.Parameter(torch.zeros(emb_dim)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) var = x.var(dim=-1, keepdim=True, unbiased=False) norm_x = (x - mean) / torch.sqrt(var + self.eps) return self.scale * norm_x + self.shift class GELU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh( torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.layers = nn.Sequential( nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), GELU(), nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), ) def forward(self, x): return self.layers(x) class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = MultiHeadAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], context_length=cfg["context_length"], num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"]) self.ff = FeedForward(cfg) self.norm1 = LayerNorm(cfg["emb_dim"]) self.norm2 = LayerNorm(cfg["emb_dim"]) self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) def forward(self, x): # Shortcut connection for attention block shortcut = x x = self.norm1(x) x = self.att(x) # Shape [batch_size, num_tokens, emb_size] x = self.drop_shortcut(x) x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) x = self.ff(x) x = self.drop_shortcut(x) x = x + shortcut # Add the original input back return x class GPTModel(nn.Module): def __init__(self, cfg): super().__init__() self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) self.drop_emb = nn.Dropout(cfg["drop_rate"]) self.trf_blocks = nn.Sequential( *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) self.final_norm = LayerNorm(cfg["emb_dim"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) def forward(self, in_idx): batch_size, seq_len = in_idx.shape tok_embeds = self.tok_emb(in_idx) pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] x = self.drop_emb(x) x = self.trf_blocks(x) x = self.final_norm(x) logits = self.out_head(x) return logits ##################################### # Chapter 5 ##################################### def text_to_token_ids(text, tokenizer): encoded = tokenizer.encode(text) encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension return encoded_tensor def token_ids_to_text(token_ids, tokenizer): flat = token_ids.squeeze(0) # remove batch dimension return tokenizer.decode(flat.tolist()) def download_and_load_gpt2(model_size, models_dir): # Validate model size allowed_sizes = ("124M", "355M", "774M", "1558M") if model_size not in allowed_sizes: raise ValueError(f"Model size not in {allowed_sizes}") # Define paths model_dir = os.path.join(models_dir, model_size) base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models" filenames = [ "checkpoint", "encoder.json", "hparams.json", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "vocab.bpe" ] # Download files os.makedirs(model_dir, exist_ok=True) for filename in filenames: file_url = os.path.join(base_url, model_size, filename) file_path = os.path.join(model_dir, filename) download_file(file_url, file_path) # Load settings and params tf_ckpt_path = tf.train.latest_checkpoint(model_dir) settings = json.load(open(os.path.join(model_dir, "hparams.json"))) params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings) return settings, params def download_file(url, destination): # Send a GET request to download the file with urllib.request.urlopen(url) as response: # Get the total file size from headers, defaulting to 0 if not present file_size = int(response.headers.get("Content-Length", 0)) # Check if file exists and has the same size if os.path.exists(destination): file_size_local = os.path.getsize(destination) if file_size == file_size_local: print(f"File already exists and is up-to-date: {destination}") return # Define the block size for reading the file block_size = 1024 # 1 Kilobyte # Initialize the progress bar with total file size progress_bar_description = os.path.basename(url) # Extract filename from URL with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar: # Open the destination file in binary write mode with open(destination, "wb") as file: # Read the file in chunks and write to destination while True: chunk = response.read(block_size) if not chunk: break file.write(chunk) progress_bar.update(len(chunk)) # Update progress bar def load_gpt2_params_from_tf_ckpt(ckpt_path, settings): # Initialize parameters dictionary with empty blocks for each layer params = {"blocks": [{} for _ in range(settings["n_layer"])]} # Iterate over each variable in the checkpoint for name, _ in tf.train.list_variables(ckpt_path): # Load the variable and remove singleton dimensions variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name)) # Process the variable name to extract relevant parts variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix # Identify the target dictionary for the variable target_dict = params if variable_name_parts[0].startswith("h"): layer_number = int(variable_name_parts[0][1:]) target_dict = params["blocks"][layer_number] # Recursively access or create nested dictionaries for key in variable_name_parts[1:-1]: target_dict = target_dict.setdefault(key, {}) # Assign the variable array to the last key last_key = variable_name_parts[-1] target_dict[last_key] = variable_array return params def assign(left, right): if left.shape != right.shape: raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}") return torch.nn.Parameter(torch.tensor(right)) def load_weights_into_gpt(gpt, params): gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe']) gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte']) for b in range(len(params["blocks"])): q_w, k_w, v_w = np.split( (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1) gpt.trf_blocks[b].att.W_query.weight = assign( gpt.trf_blocks[b].att.W_query.weight, q_w.T) gpt.trf_blocks[b].att.W_key.weight = assign( gpt.trf_blocks[b].att.W_key.weight, k_w.T) gpt.trf_blocks[b].att.W_value.weight = assign( gpt.trf_blocks[b].att.W_value.weight, v_w.T) q_b, k_b, v_b = np.split( (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1) gpt.trf_blocks[b].att.W_query.bias = assign( gpt.trf_blocks[b].att.W_query.bias, q_b) gpt.trf_blocks[b].att.W_key.bias = assign( gpt.trf_blocks[b].att.W_key.bias, k_b) gpt.trf_blocks[b].att.W_value.bias = assign( gpt.trf_blocks[b].att.W_value.bias, v_b) gpt.trf_blocks[b].att.out_proj.weight = assign( gpt.trf_blocks[b].att.out_proj.weight, params["blocks"][b]["attn"]["c_proj"]["w"].T) gpt.trf_blocks[b].att.out_proj.bias = assign( gpt.trf_blocks[b].att.out_proj.bias, params["blocks"][b]["attn"]["c_proj"]["b"]) gpt.trf_blocks[b].ff.layers[0].weight = assign( gpt.trf_blocks[b].ff.layers[0].weight, params["blocks"][b]["mlp"]["c_fc"]["w"].T) gpt.trf_blocks[b].ff.layers[0].bias = assign( gpt.trf_blocks[b].ff.layers[0].bias, params["blocks"][b]["mlp"]["c_fc"]["b"]) gpt.trf_blocks[b].ff.layers[2].weight = assign( gpt.trf_blocks[b].ff.layers[2].weight, params["blocks"][b]["mlp"]["c_proj"]["w"].T) gpt.trf_blocks[b].ff.layers[2].bias = assign( gpt.trf_blocks[b].ff.layers[2].bias, params["blocks"][b]["mlp"]["c_proj"]["b"]) gpt.trf_blocks[b].norm1.scale = assign( gpt.trf_blocks[b].norm1.scale, params["blocks"][b]["ln_1"]["g"]) gpt.trf_blocks[b].norm1.shift = assign( gpt.trf_blocks[b].norm1.shift, params["blocks"][b]["ln_1"]["b"]) gpt.trf_blocks[b].norm2.scale = assign( gpt.trf_blocks[b].norm2.scale, params["blocks"][b]["ln_2"]["g"]) gpt.trf_blocks[b].norm2.shift = assign( gpt.trf_blocks[b].norm2.shift, params["blocks"][b]["ln_2"]["b"]) gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"]) gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"]) gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"]) ##################################### # Chapter 6 ##################################### def classify_review(text, model, tokenizer, device, max_length=None, pad_token_id=50256): model.eval() # Prepare inputs to the model input_ids = tokenizer.encode(text) supported_context_length = model.pos_emb.weight.shape[0] # Truncate sequences if they too long input_ids = input_ids[:min(max_length, supported_context_length)] # Pad sequences to the longest sequence input_ids += [pad_token_id] * (max_length - len(input_ids)) input_tensor = torch.tensor(input_ids, device=device).unsqueeze(0) # add batch dimension # Model inference with torch.no_grad(): logits = model(input_tensor.to(device))[:, -1, :] # Logits of the last output token predicted_label = torch.argmax(logits, dim=-1).item() # Return the classified result return "spam" if predicted_label == 1 else "not spam"