# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch # This file collects all the relevant code that we covered thus far # throughout Chapters 3-4. # This file can be run as a standalone script. import argparse import time import tiktoken import torch import torch.nn as nn MOE_FF_TIME_MS = [] MOE_FF_MEM_BYTES = [] ##################################### # Chapter 3 ##################################### class MultiHeadAttention(nn.Module): def __init__(self, d_in, d_out, dropout, num_heads, qkv_bias=False): super().__init__() assert d_out % num_heads == 0, "d_out must be divisible by num_heads" self.d_out = d_out self.num_heads = num_heads self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs self.dropout = nn.Dropout(dropout) #################################################### # KV cache-related code self.register_buffer("cache_k", None, persistent=False) self.register_buffer("cache_v", None, persistent=False) self.ptr_current_pos = 0 #################################################### def forward(self, x, use_cache=False): b, num_tokens, d_in = x.shape keys_new = self.W_key(x) # Shape: (b, num_tokens, d_out) values_new = self.W_value(x) queries = self.W_query(x) # We implicitly split the matrix by adding a `num_heads` dimension # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) keys_new = keys_new.view(b, num_tokens, self.num_heads, self.head_dim) values_new = values_new.view(b, num_tokens, self.num_heads, self.head_dim) queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) #################################################### # KV cache-related if use_cache: if self.cache_k is None: self.cache_k, self.cache_v = keys_new, values_new else: self.cache_k = torch.cat([self.cache_k, keys_new], dim=1) self.cache_v = torch.cat([self.cache_v, values_new], dim=1) keys, values = self.cache_k, self.cache_v else: keys, values = keys_new, values_new #################################################### # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) keys = keys.transpose(1, 2) queries = queries.transpose(1, 2) values = values.transpose(1, 2) # Compute scaled dot-product attention (aka self-attention) with a causal mask attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head #################################################### # causal mask num_tokens_Q = queries.shape[-2] num_tokens_K = keys.shape[-2] device = queries.device if use_cache: q_positions = torch.arange( self.ptr_current_pos, self.ptr_current_pos + num_tokens_Q, device=device, dtype=torch.long, ) self.ptr_current_pos += num_tokens_Q else: q_positions = torch.arange(num_tokens_Q, device=device, dtype=torch.long) self.ptr_current_pos = 0 k_positions = torch.arange(num_tokens_K, device=device, dtype=torch.long) mask_bool = q_positions.unsqueeze(-1) < k_positions.unsqueeze(0) # Use the mask to fill attention scores attn_scores.masked_fill_(mask_bool, -torch.inf) attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) attn_weights = self.dropout(attn_weights) # Shape: (b, num_tokens, num_heads, head_dim) context_vec = (attn_weights @ values).transpose(1, 2) # Combine heads, where self.d_out = self.num_heads * self.head_dim context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) context_vec = self.out_proj(context_vec) # optional projection return context_vec def reset_cache(self): self.cache_k, self.cache_v = None, None self.ptr_current_pos = 0 ##################################### # Chapter 4 ##################################### class LayerNorm(nn.Module): def __init__(self, emb_dim): super().__init__() self.eps = 1e-5 self.scale = nn.Parameter(torch.ones(emb_dim)) self.shift = nn.Parameter(torch.zeros(emb_dim)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) var = x.var(dim=-1, keepdim=True, unbiased=False) norm_x = (x - mean) / torch.sqrt(var + self.eps) return self.scale * norm_x + self.shift class GELU(nn.Module): def __init__(self): super().__init__() def forward(self, x): return 0.5 * x * (1 + torch.tanh( torch.sqrt(torch.tensor(2.0 / torch.pi)) * (x + 0.044715 * torch.pow(x, 3)) )) class FeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.layers = nn.Sequential( nn.Linear(cfg["emb_dim"], cfg["hidden_dim"]), GELU(), nn.Linear(cfg["hidden_dim"], cfg["emb_dim"]), ) def forward(self, x): return self.layers(x) class MoEFeedForward(nn.Module): def __init__(self, cfg): super().__init__() self.num_experts_per_tok = cfg["num_experts_per_tok"] self.num_experts = cfg["num_experts"] self.emb_dim = cfg["emb_dim"] self.gate = nn.Linear(cfg["emb_dim"], cfg["num_experts"], bias=False) self.fc1 = nn.ModuleList( [ nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], bias=False) for _ in range(self.num_experts) ] ) self.fc2 = nn.ModuleList( [ nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], bias=False) for _ in range(self.num_experts) ] ) self.fc3 = nn.ModuleList( [ nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], bias=False) for _ in range(self.num_experts) ] ) def forward(self, x): # x: (batch, seq_len, emb_dim) scores = self.gate(x) # (b, seq_len, num_experts) topk_scores, topk_indices = torch.topk(scores, self.num_experts_per_tok, dim=-1) topk_probs = torch.softmax(topk_scores, dim=-1) batch, seq_len, _ = x.shape x_flat = x.reshape(batch * seq_len, -1) out_flat = torch.zeros(batch * seq_len, self.emb_dim, device=x.device, dtype=x.dtype) topk_indices_flat = topk_indices.reshape(-1, self.num_experts_per_tok) topk_probs_flat = topk_probs.reshape(-1, self.num_experts_per_tok) unique_experts = torch.unique(topk_indices_flat) for expert_id_tensor in unique_experts: expert_id = int(expert_id_tensor.item()) mask = topk_indices_flat == expert_id if not mask.any(): continue token_mask = mask.any(dim=-1) selected_idx = token_mask.nonzero(as_tuple=False).squeeze(-1) if selected_idx.numel() == 0: continue expert_input = x_flat.index_select(0, selected_idx) hidden = torch.nn.functional.silu(self.fc1[expert_id](expert_input)) * self.fc2[ expert_id ](expert_input) expert_out = self.fc3[expert_id](hidden) mask_selected = mask[selected_idx] slot_indices = mask_selected.int().argmax(dim=-1, keepdim=True) selected_probs = torch.gather( topk_probs_flat.index_select(0, selected_idx), dim=-1, index=slot_indices ).squeeze(-1) out_flat.index_add_(0, selected_idx, expert_out * selected_probs.unsqueeze(-1)) return out_flat.reshape(batch, seq_len, self.emb_dim) class TransformerBlock(nn.Module): def __init__(self, cfg): super().__init__() self.att = MultiHeadAttention( d_in=cfg["emb_dim"], d_out=cfg["emb_dim"], num_heads=cfg["n_heads"], dropout=cfg["drop_rate"], qkv_bias=cfg["qkv_bias"], ) self.ff = MoEFeedForward(cfg) if cfg["num_experts"] > 0 else FeedForward(cfg) self.norm1 = LayerNorm(cfg["emb_dim"]) self.norm2 = LayerNorm(cfg["emb_dim"]) self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) def forward(self, x, use_cache=False): # Shortcut connection for attention block shortcut = x x = self.norm1(x) # x = self.att(x) # Shape [batch_size, num_tokens, emb_size] #################################################### # KV cache-related x = self.att(x, use_cache=use_cache) #################################################### x = self.drop_shortcut(x) x = x + shortcut # Add the original input back # Shortcut connection for feed-forward block shortcut = x x = self.norm2(x) use_cuda = torch.cuda.is_available() if use_cuda: torch.cuda.synchronize() torch.cuda.reset_peak_memory_stats() base_mem = torch.cuda.memory_allocated() start = time.perf_counter() x = self.ff(x) if use_cuda: torch.cuda.synchronize() peak_mem = torch.cuda.max_memory_allocated() MOE_FF_MEM_BYTES.append(peak_mem - base_mem) MOE_FF_TIME_MS.append((time.perf_counter() - start) * 1000.0) x = self.drop_shortcut(x) x = x + shortcut # Add the original input back return x class GPTModel(nn.Module): def __init__(self, cfg): super().__init__() self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) self.drop_emb = nn.Dropout(cfg["drop_rate"]) # self.trf_blocks = nn.Sequential( # *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) #################################################### # KV cache-related self.trf_blocks = nn.ModuleList( [TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) self.current_pos = 0 #################################################### self.final_norm = LayerNorm(cfg["emb_dim"]) self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) def forward(self, in_idx, use_cache=False): batch_size, seq_len = in_idx.shape tok_embeds = self.tok_emb(in_idx) # pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) #################################################### # KV cache-related if use_cache: pos_ids = torch.arange(self.current_pos, self.current_pos + seq_len, device=in_idx.device, dtype=torch.long) self.current_pos += seq_len else: pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long) pos_embeds = self.pos_emb(pos_ids).unsqueeze(0) #################################################### x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] x = self.drop_emb(x) # x = self.trf_blocks(x) #################################################### # KV cache-related for blk in self.trf_blocks: x = blk(x, use_cache=use_cache) #################################################### x = self.final_norm(x) logits = self.out_head(x) return logits #################################################### # KV cache-related def reset_kv_cache(self): for blk in self.trf_blocks: blk.att.reset_cache() self.current_pos = 0 #################################################### def generate_text_simple_cached(model, idx, max_new_tokens, context_size=None, use_cache=True): model.eval() ctx_len = context_size or model.pos_emb.num_embeddings batch_size, base_len = idx.shape total_len = base_len + max_new_tokens generated = torch.empty( batch_size, total_len, dtype=idx.dtype, device=idx.device ) generated[:, :base_len] = idx cur_len = base_len use_cuda = torch.cuda.is_available() MOE_FF_TIME_MS.clear() MOE_FF_MEM_BYTES.clear() with torch.no_grad(): if use_cache: # Init cache with full prompt model.reset_kv_cache() prompt_start = max(0, cur_len - ctx_len) logits = model(generated[:, prompt_start:cur_len], use_cache=True) if use_cuda: torch.cuda.synchronize() for _ in range(max_new_tokens): # a) pick the token with the highest log-probability (greedy sampling) next_idx = logits[:, -1].argmax(dim=-1) # b) append it to the running sequence (in-place) generated[:, cur_len] = next_idx cur_len += 1 # c) feed model only the new token logits = model(generated[:, cur_len - 1 : cur_len], use_cache=True) if use_cuda: torch.cuda.synchronize() else: if use_cuda: torch.cuda.synchronize() for _ in range(max_new_tokens): start_ctx = max(0, cur_len - ctx_len) logits = model(generated[:, start_ctx:cur_len], use_cache=False) next_idx = logits[:, -1].argmax(dim=-1) generated[:, cur_len] = next_idx cur_len += 1 if use_cuda: torch.cuda.synchronize() if MOE_FF_TIME_MS: avg_ffn_time = sum(MOE_FF_TIME_MS) / len(MOE_FF_TIME_MS) print(f"Avg MoE FF time/call: {avg_ffn_time:.3f} ms") if MOE_FF_MEM_BYTES: avg_ffn_mem = sum(MOE_FF_MEM_BYTES) / len(MOE_FF_MEM_BYTES) max_ffn_mem = max(MOE_FF_MEM_BYTES) def to_mb(bytes_val): return bytes_val / (1024 ** 2) print(f"Avg MoE FF mem delta/call: {to_mb(avg_ffn_mem):.2f} MB (max {to_mb(max_ffn_mem):.2f} MB)") return generated[:, :cur_len] def main(): parser = argparse.ArgumentParser() parser.add_argument("--emb_dim", type=int, default=768, help="Model embedding dimension.") parser.add_argument("--hidden_dim", type=int, default=768*4, help="Intermediate FFN or MoE size.") parser.add_argument("--n_heads", type=int, default=12, help="Number of attention heads.") parser.add_argument("--n_layers", type=int, default=12, help="Number of transformer blocks.") parser.add_argument("--max_new_tokens", type=int, default=200, help="Number of tokens to generate.") parser.add_argument( "--no_kv_cache", action="store_true", help="Disable KV caching during generation.", ) parser.add_argument( "--num_experts", type=int, default=0, help="Number of experts. If 0, use dense FFN. If >0, use MoE.", ) parser.add_argument( "--num_experts_per_tok", type=int, default=2, help="Top-k experts per token when using MoE (ignored if num_experts=0).", ) args = parser.parse_args() start_context = "Hello, I am" tokenizer = tiktoken.get_encoding("gpt2") encoded = tokenizer.encode(start_context) GPT_CONFIG_124M = { "vocab_size": 50257, # Vocabulary size "context_length": args.max_new_tokens + len(encoded), "emb_dim": args.emb_dim, # Embedding dimension "hidden_dim": args.hidden_dim, # Intermediate size "n_heads": args.n_heads, # Number of attention heads "n_layers": args.n_layers, # Number of layers "drop_rate": 0.0, # Dropout rate "qkv_bias": False, # Query-Key-Value bias "num_experts": args.num_experts, "num_experts_per_tok": args.num_experts_per_tok if args.num_experts > 0 else 0, } torch.manual_seed(123) model = GPTModel(GPT_CONFIG_124M) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device, dtype=torch.bfloat16) model.eval() # disable dropout encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0) print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}") print("\nInput text:", start_context) print("Encoded input text:", encoded) print("encoded_tensor.shape:", encoded_tensor.shape) if torch.cuda.is_available(): torch.cuda.synchronize() start = time.time() token_ids = generate_text_simple_cached( model=model, idx=encoded_tensor, max_new_tokens=args.max_new_tokens, use_cache=not args.no_kv_cache, ) if torch.cuda.is_available(): torch.cuda.synchronize() total_time = time.time() - start decoded_text = tokenizer.decode(token_ids.squeeze(0).tolist()) print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}") print("\nOutput:", token_ids) print("Output length:", len(token_ids[0])) print("Output text:", decoded_text) print(f"\nTime: {total_time:.2f} sec") print(f"{int(len(token_ids[0])/total_time)} tokens/sec") if torch.cuda.is_available(): max_mem_bytes = torch.cuda.max_memory_allocated() max_mem_gb = max_mem_bytes / (1024 ** 3) print(f"Max memory allocated: {max_mem_gb:.2f} GB") if __name__ == "__main__": main()