# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import argparse from pathlib import Path import time import pandas as pd import torch from torch.utils.data import DataLoader from torch.utils.data import Dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification class IMDBDataset(Dataset): def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256, use_attention_mask=False): self.data = pd.read_csv(csv_file) self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer) self.pad_token_id = pad_token_id self.use_attention_mask = use_attention_mask # Pre-tokenize texts and create attention masks if required self.encoded_texts = [ tokenizer.encode(text, truncation=True, max_length=self.max_length) for text in self.data["text"] ] self.encoded_texts = [ et + [pad_token_id] * (self.max_length - len(et)) for et in self.encoded_texts ] if self.use_attention_mask: self.attention_masks = [ self._create_attention_mask(et) for et in self.encoded_texts ] else: self.attention_masks = None def _create_attention_mask(self, encoded_text): return [1 if token_id != self.pad_token_id else 0 for token_id in encoded_text] def __getitem__(self, index): encoded = self.encoded_texts[index] label = self.data.iloc[index]["label"] if self.use_attention_mask: attention_mask = self.attention_masks[index] else: attention_mask = torch.ones(self.max_length, dtype=torch.long) return ( torch.tensor(encoded, dtype=torch.long), torch.tensor(attention_mask, dtype=torch.long), torch.tensor(label, dtype=torch.long) ) def __len__(self): return len(self.data) def _longest_encoded_length(self, tokenizer): max_length = 0 for text in self.data["text"]: encoded_length = len(tokenizer.encode(text)) if encoded_length > max_length: max_length = encoded_length return max_length def calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device): attention_mask_batch = attention_mask_batch.to(device) input_batch, target_batch = input_batch.to(device), target_batch.to(device) # logits = model(input_batch)[:, -1, :] # Logits of last output token logits = model(input_batch, attention_mask=attention_mask_batch).logits loss = torch.nn.functional.cross_entropy(logits, target_batch) return loss # Same as in chapter 5 def calc_loss_loader(data_loader, model, device, num_batches=None): total_loss = 0. if num_batches is None: num_batches = len(data_loader) else: # Reduce the number of batches to match the total number of batches in the data loader # if num_batches exceeds the number of batches in the data loader num_batches = min(num_batches, len(data_loader)) for i, (input_batch, attention_mask_batch, target_batch) in enumerate(data_loader): if i < num_batches: loss = calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device) total_loss += loss.item() else: break return total_loss / num_batches @torch.no_grad() # Disable gradient tracking for efficiency def calc_accuracy_loader(data_loader, model, device, num_batches=None): model.eval() correct_predictions, num_examples = 0, 0 if num_batches is None: num_batches = len(data_loader) else: num_batches = min(num_batches, len(data_loader)) for i, (input_batch, attention_mask_batch, target_batch) in enumerate(data_loader): if i < num_batches: attention_mask_batch = attention_mask_batch.to(device) input_batch, target_batch = input_batch.to(device), target_batch.to(device) # logits = model(input_batch)[:, -1, :] # Logits of last output token logits = model(input_batch, attention_mask=attention_mask_batch).logits predicted_labels = torch.argmax(logits, dim=1) num_examples += predicted_labels.shape[0] correct_predictions += (predicted_labels == target_batch).sum().item() else: break return correct_predictions / num_examples def evaluate_model(model, train_loader, val_loader, device, eval_iter): model.eval() with torch.no_grad(): train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) model.train() return train_loss, val_loss def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs, eval_freq, eval_iter, max_steps=None): # Initialize lists to track losses and tokens seen train_losses, val_losses, train_accs, val_accs = [], [], [], [] examples_seen, global_step = 0, -1 # Main training loop for epoch in range(num_epochs): model.train() # Set model to training mode for input_batch, attention_mask_batch, target_batch in train_loader: optimizer.zero_grad() # Reset loss gradients from previous batch iteration loss = calc_loss_batch(input_batch, attention_mask_batch, target_batch, model, device) loss.backward() # Calculate loss gradients optimizer.step() # Update model weights using loss gradients examples_seen += input_batch.shape[0] # New: track examples instead of tokens global_step += 1 # Optional evaluation step if global_step % eval_freq == 0: train_loss, val_loss = evaluate_model( model, train_loader, val_loader, device, eval_iter) train_losses.append(train_loss) val_losses.append(val_loss) print(f"Ep {epoch+1} (Step {global_step:06d}): " f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}") if max_steps is not None and global_step > max_steps: break # New: Calculate accuracy after each epoch train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter) val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter) print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="") print(f"Validation accuracy: {val_accuracy*100:.2f}%") train_accs.append(train_accuracy) val_accs.append(val_accuracy) if max_steps is not None and global_step > max_steps: break return train_losses, val_losses, train_accs, val_accs, examples_seen if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--trainable_layers", type=str, default="all", help=( "Which layers to train. Options: 'all', 'last_block', 'last_layer'." ) ) parser.add_argument( "--use_attention_mask", type=str, default="true", help=( "Whether to use a attention mask for padding tokens. Options: 'true', 'false'." ) ) parser.add_argument( "--model", type=str, default="distilbert", help=( "Which model to train. Options: 'distilbert', 'bert', 'roberta'." ) ) parser.add_argument( "--num_epochs", type=int, default=1, help=( "Number of epochs." ) ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help=( "Learning rate." ) ) args = parser.parse_args() ############################### # Load model ############################### torch.manual_seed(123) if args.model == "distilbert": model = AutoModelForSequenceClassification.from_pretrained( "distilbert-base-uncased", num_labels=2 ) model.out_head = torch.nn.Linear(in_features=768, out_features=2) for param in model.parameters(): param.requires_grad = False if args.trainable_layers == "last_layer": for param in model.out_head.parameters(): param.requires_grad = True elif args.trainable_layers == "last_block": for param in model.pre_classifier.parameters(): param.requires_grad = True for param in model.distilbert.transformer.layer[-1].parameters(): param.requires_grad = True elif args.trainable_layers == "all": for param in model.parameters(): param.requires_grad = True else: raise ValueError("Invalid --trainable_layers argument.") tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") elif args.model == "bert": model = AutoModelForSequenceClassification.from_pretrained( "bert-base-uncased", num_labels=2 ) model.classifier = torch.nn.Linear(in_features=768, out_features=2) for param in model.parameters(): param.requires_grad = False if args.trainable_layers == "last_layer": for param in model.classifier.parameters(): param.requires_grad = True elif args.trainable_layers == "last_block": for param in model.classifier.parameters(): param.requires_grad = True for param in model.bert.pooler.dense.parameters(): param.requires_grad = True for param in model.bert.encoder.layer[-1].parameters(): param.requires_grad = True elif args.trainable_layers == "all": for param in model.parameters(): param.requires_grad = True else: raise ValueError("Invalid --trainable_layers argument.") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") elif args.model == "roberta": model = AutoModelForSequenceClassification.from_pretrained( "FacebookAI/roberta-large", num_labels=2 ) model.classifier.out_proj = torch.nn.Linear(in_features=1024, out_features=2) for param in model.parameters(): param.requires_grad = False if args.trainable_layers == "last_layer": for param in model.classifier.parameters(): param.requires_grad = True elif args.trainable_layers == "last_block": for param in model.classifier.parameters(): param.requires_grad = True for param in model.roberta.encoder.layer[-1].parameters(): param.requires_grad = True elif args.trainable_layers == "all": for param in model.parameters(): param.requires_grad = True else: raise ValueError("Invalid --trainable_layers argument.") tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-large") else: raise ValueError("Selected --model {args.model} not supported.") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() ############################### # Instantiate dataloaders ############################### base_path = Path(".") if args.use_attention_mask.lower() == "true": use_attention_mask = True elif args.use_attention_mask.lower() == "false": use_attention_mask = False else: raise ValueError("Invalid argument for `use_attention_mask`.") train_dataset = IMDBDataset( base_path / "train.csv", max_length=256, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, use_attention_mask=use_attention_mask ) val_dataset = IMDBDataset( base_path / "validation.csv", max_length=256, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, use_attention_mask=use_attention_mask ) test_dataset = IMDBDataset( base_path / "test.csv", max_length=256, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, use_attention_mask=use_attention_mask ) num_workers = 0 batch_size = 8 train_loader = DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, drop_last=True, ) val_loader = DataLoader( dataset=val_dataset, batch_size=batch_size, num_workers=num_workers, drop_last=False, ) test_loader = DataLoader( dataset=test_dataset, batch_size=batch_size, num_workers=num_workers, drop_last=False, ) ############################### # Train model ############################### start_time = time.time() torch.manual_seed(123) optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=0.1) train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple( model, train_loader, val_loader, optimizer, device, num_epochs=args.num_epochs, eval_freq=50, eval_iter=20, max_steps=None ) end_time = time.time() execution_time_minutes = (end_time - start_time) / 60 print(f"Training completed in {execution_time_minutes:.2f} minutes.") ############################### # Evaluate model ############################### print("\nEvaluating on the full datasets ...\n") train_accuracy = calc_accuracy_loader(train_loader, model, device) val_accuracy = calc_accuracy_loader(val_loader, model, device) test_accuracy = calc_accuracy_loader(test_loader, model, device) print(f"Training accuracy: {train_accuracy*100:.2f}%") print(f"Validation accuracy: {val_accuracy*100:.2f}%") print(f"Test accuracy: {test_accuracy*100:.2f}%")