{ "cells": [ { "cell_type": "markdown", "id": "ba450fb1-8a26-4894-ab7a-5d7bfefe90ce", "metadata": {}, "source": [ "\n", "Supplementary code for \"Build a Large Language Model From Scratch\": https://www.manning.com/books/build-a-large-language-model-from-scratch by Sebastian Raschka
\n", "Code repository: https://github.com/rasbt/LLMs-from-scratch\n", "
" ] }, { "cell_type": "markdown", "id": "51c9672d-8d0c-470d-ac2d-1271f8ec3f14", "metadata": {}, "source": [ "# Chapter 6 Exercise solutions" ] }, { "cell_type": "markdown", "id": "5fea8be3-30a1-4623-a6d7-b095c6c1092e", "metadata": {}, "source": [ "## Exercise 6.1: Increasing the context length" ] }, { "cell_type": "markdown", "id": "5860ba9f-2db3-4480-b96b-4be1c68981eb", "metadata": {}, "source": [ "We can pad the inputs to the maximum number of tokens to the maximum the model supports by setting the max length to\n", "\n", "```python\n", "max_length = 1024\n", "\n", "train_dataset = SpamDataset(base_path / \"train.csv\", max_length=max_length, tokenizer=tokenizer)\n", "val_dataset = SpamDataset(base_path / \"validation.csv\", max_length=max_length, tokenizer=tokenizer)\n", "test_dataset = SpamDataset(base_path / \"test.csv\", max_length=max_length, tokenizer=tokenizer)\n", "\n", "```\n", "\n", "or, equivalently, we can define the `max_length` via:\n", "\n", "```python\n", "max_length = model.pos_emb.weight.shape[0]\n", "```\n", "\n", "or\n", "\n", "```python\n", "max_length = BASE_CONFIG[\"context_length\"]\n", "```" ] }, { "cell_type": "markdown", "id": "2b0f4d5d-17fd-4265-93d8-ea08a22fdaf8", "metadata": {}, "source": [ "For convenience, you can run this experiment via\n", "\n", "```\n", "python additional-experiments.py --context_length \"model_context_length\"\n", "```\n", "\n", "using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a substantially worse test accuracy of 78.33% (versus the 95.67% in the main chapter)." ] }, { "cell_type": "markdown", "id": "5a780455-f52a-48d1-ab82-6afd40bcad8b", "metadata": {}, "source": [ "## Exercise 6.2: Finetuning the whole model" ] }, { "cell_type": "markdown", "id": "56aa5208-aa29-4165-a0ec-7480754e2a18", "metadata": {}, "source": [ "Instead of finetuning just the final transformer block, we can finetune the entire model by removing the following lines from the code:\n", "\n", "```python\n", "for param in model.parameters():\n", " param.requires_grad = False\n", "```\n", "\n", "For convenience, you can run this experiment via\n", "\n", "```\n", "python additional-experiments.py --trainable_layers all\n", "```\n", "\n", "using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a 1% improved test accuracy of 96.67% (versus the 95.67% in the main chapter)." ] }, { "cell_type": "markdown", "id": "2269bce3-f2b5-4a76-a692-5977c75a57b6", "metadata": {}, "source": [ "## Exercise 6.3: Finetuning the first versus last token " ] }, { "cell_type": "markdown", "id": "7418a629-51b6-4aa2-83b7-bc0261bc370f", "metadata": {}, "source": [ "ther than finetuning the last output token, we can finetune the first output token by changing \n", "\n", "```python\n", "model(input_batch)[:, -1, :]\n", "```\n", "\n", "to\n", "\n", "```python\n", "model(input_batch)[:, 0, :]\n", "```\n", "\n", "everywhere in the code.\n", "\n", "For convenience, you can run this experiment via\n", "\n", "```\n", "python additional-experiments.py --trainable_token first\n", "```\n", "\n", "using the code in the [../02_bonus_additional-experiments](../02_bonus_additional-experiments) folder, which results in a substantially worse test accuracy of 75.00% (versus the 95.67% in the main chapter)." ] }, { "cell_type": "code", "execution_count": null, "id": "e5e6188a-f182-4f26-b9e5-ccae3ecadae0", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }