# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt). # Source for "Build a Large Language Model From Scratch" # - https://www.manning.com/books/build-a-large-language-model-from-scratch # Code: https://github.com/rasbt/LLMs-from-scratch import urllib.request import zipfile import os from pathlib import Path import matplotlib.pyplot as plt from torch.utils.data import Dataset import torch import pandas as pd def download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path): if data_file_path.exists(): print(f"{data_file_path} already exists. Skipping download and extraction.") return # Downloading the file with urllib.request.urlopen(url) as response: with open(zip_path, "wb") as out_file: out_file.write(response.read()) # Unzipping the file with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(extracted_path) # Add .tsv file extension original_file_path = Path(extracted_path) / "SMSSpamCollection" os.rename(original_file_path, data_file_path) print(f"File downloaded and saved as {data_file_path}") def create_balanced_dataset(df): # Count the instances of "spam" num_spam = df[df["Label"] == "spam"].shape[0] # Randomly sample "ham" instances to match the number of "spam" instances ham_subset = df[df["Label"] == "ham"].sample(num_spam, random_state=123) # Combine ham "subset" with "spam" balanced_df = pd.concat([ham_subset, df[df["Label"] == "spam"]]) return balanced_df def random_split(df, train_frac, validation_frac): # Shuffle the entire DataFrame df = df.sample(frac=1, random_state=123).reset_index(drop=True) # Calculate split indices train_end = int(len(df) * train_frac) validation_end = train_end + int(len(df) * validation_frac) # Split the DataFrame train_df = df[:train_end] validation_df = df[train_end:validation_end] test_df = df[validation_end:] return train_df, validation_df, test_df class SpamDataset(Dataset): def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256): self.data = pd.read_csv(csv_file) # Pre-tokenize texts self.encoded_texts = [ tokenizer.encode(text) for text in self.data["Text"] ] if max_length is None: self.max_length = self._longest_encoded_length() else: self.max_length = max_length # Truncate sequences if they are longer than max_length self.encoded_texts = [ encoded_text[:self.max_length] for encoded_text in self.encoded_texts ] # Pad sequences to the longest sequence self.encoded_texts = [ encoded_text + [pad_token_id] * (self.max_length - len(encoded_text)) for encoded_text in self.encoded_texts ] def __getitem__(self, index): encoded = self.encoded_texts[index] label = self.data.iloc[index]["Label"] return ( torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long) ) def __len__(self): return len(self.data) def _longest_encoded_length(self): max_length = 0 for encoded_text in self.encoded_texts: encoded_length = len(encoded_text) if encoded_length > max_length: max_length = encoded_length return max_length # Note: A more pythonic version to implement this method # is the following, which is also used in the next chapter: # return max(len(encoded_text) for encoded_text in self.encoded_texts) def calc_accuracy_loader(data_loader, model, device, num_batches=None): model.eval() correct_predictions, num_examples = 0, 0 if num_batches is None: num_batches = len(data_loader) else: num_batches = min(num_batches, len(data_loader)) for i, (input_batch, target_batch) in enumerate(data_loader): if i < num_batches: input_batch, target_batch = input_batch.to(device), target_batch.to(device) with torch.no_grad(): logits = model(input_batch)[:, -1, :] # Logits of last output token predicted_labels = torch.argmax(logits, dim=-1) num_examples += predicted_labels.shape[0] correct_predictions += (predicted_labels == target_batch).sum().item() else: break return correct_predictions / num_examples def calc_loss_batch(input_batch, target_batch, model, device): input_batch, target_batch = input_batch.to(device), target_batch.to(device) logits = model(input_batch)[:, -1, :] # Logits of last output token loss = torch.nn.functional.cross_entropy(logits, target_batch) return loss def calc_loss_loader(data_loader, model, device, num_batches=None): total_loss = 0. if len(data_loader) == 0: return float("nan") elif num_batches is None: num_batches = len(data_loader) else: # Reduce the number of batches to match the total number of batches in the data loader # if num_batches exceeds the number of batches in the data loader num_batches = min(num_batches, len(data_loader)) for i, (input_batch, target_batch) in enumerate(data_loader): if i < num_batches: loss = calc_loss_batch(input_batch, target_batch, model, device) total_loss += loss.item() else: break return total_loss / num_batches def evaluate_model(model, train_loader, val_loader, device, eval_iter): model.eval() with torch.no_grad(): train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter) val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter) model.train() return train_loss, val_loss def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs, eval_freq, eval_iter): # Initialize lists to track losses and examples seen train_losses, val_losses, train_accs, val_accs = [], [], [], [] examples_seen, global_step = 0, -1 # Main training loop for epoch in range(num_epochs): model.train() # Set model to training mode for input_batch, target_batch in train_loader: optimizer.zero_grad() # Reset loss gradients from previous batch iteration loss = calc_loss_batch(input_batch, target_batch, model, device) loss.backward() # Calculate loss gradients optimizer.step() # Update model weights using loss gradients examples_seen += input_batch.shape[0] # New: track examples instead of tokens global_step += 1 # Optional evaluation step if global_step % eval_freq == 0: train_loss, val_loss = evaluate_model( model, train_loader, val_loader, device, eval_iter) train_losses.append(train_loss) val_losses.append(val_loss) print(f"Ep {epoch+1} (Step {global_step:06d}): " f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}") # Calculate accuracy after each epoch train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter) val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter) print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="") print(f"Validation accuracy: {val_accuracy*100:.2f}%") train_accs.append(train_accuracy) val_accs.append(val_accuracy) return train_losses, val_losses, train_accs, val_accs, examples_seen def plot_values(epochs_seen, examples_seen, train_values, val_values, label="loss"): fig, ax1 = plt.subplots(figsize=(5, 3)) # Plot training and validation loss against epochs ax1.plot(epochs_seen, train_values, label=f"Training {label}") ax1.plot(epochs_seen, val_values, linestyle="-.", label=f"Validation {label}") ax1.set_xlabel("Epochs") ax1.set_ylabel(label.capitalize()) ax1.legend() # Create a second x-axis for examples seen ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis ax2.plot(examples_seen, train_values, alpha=0) # Invisible plot for aligning ticks ax2.set_xlabel("Examples seen") fig.tight_layout() # Adjust layout to make room plt.savefig(f"{label}-plot.pdf") plt.show() def classify_review(text, model, tokenizer, device, max_length=None, pad_token_id=50256): model.eval() # Prepare inputs to the model input_ids = tokenizer.encode(text) supported_context_length = model.pos_emb.weight.shape[0] # Note: In the book, this was originally written as pos_emb.weight.shape[1] by mistake # It didn't break the code but would have caused unnecessary truncation (to 768 instead of 1024) # Truncate sequences if they too long input_ids = input_ids[:min(max_length, supported_context_length)] # Pad sequences to the longest sequence input_ids += [pad_token_id] * (max_length - len(input_ids)) input_tensor = torch.tensor(input_ids, device=device).unsqueeze(0) # add batch dimension # Model inference with torch.no_grad(): logits = model(input_tensor)[:, -1, :] # Logits of the last output token predicted_label = torch.argmax(logits, dim=-1).item() # Return the classified result return "spam" if predicted_label == 1 else "not spam"