mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-06-26 23:50:03 +00:00
213 lines
6.8 KiB
Python
213 lines
6.8 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
# Appendix A: Introduction to PyTorch (Part 3)
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
# NEW imports:
|
|
import os
|
|
import platform
|
|
import torch.multiprocessing as mp
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.distributed import init_process_group, destroy_process_group
|
|
|
|
|
|
# NEW: function to initialize a distributed process group (1 process / GPU)
|
|
# this allows communication among processes
|
|
def ddp_setup(rank, world_size):
|
|
"""
|
|
Arguments:
|
|
rank: a unique process ID
|
|
world_size: total number of processes in the group
|
|
"""
|
|
# rank of machine running rank:0 process
|
|
# here, we assume all GPUs are on the same machine
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
# any free port on the machine
|
|
os.environ["MASTER_PORT"] = "12345"
|
|
|
|
# initialize process group
|
|
if platform.system() == "Windows":
|
|
# Disable libuv because PyTorch for Windows isn't built with support
|
|
os.environ["USE_LIBUV"] = "0"
|
|
# Windows users may have to use "gloo" instead of "nccl" as backend
|
|
# gloo: Facebook Collective Communication Library
|
|
init_process_group(backend="gloo", rank=rank, world_size=world_size)
|
|
else:
|
|
# nccl: NVIDIA Collective Communication Library
|
|
init_process_group(backend="nccl", rank=rank, world_size=world_size)
|
|
|
|
torch.cuda.set_device(rank)
|
|
|
|
|
|
class ToyDataset(Dataset):
|
|
def __init__(self, X, y):
|
|
self.features = X
|
|
self.labels = y
|
|
|
|
def __getitem__(self, index):
|
|
one_x = self.features[index]
|
|
one_y = self.labels[index]
|
|
return one_x, one_y
|
|
|
|
def __len__(self):
|
|
return self.labels.shape[0]
|
|
|
|
|
|
class NeuralNetwork(torch.nn.Module):
|
|
def __init__(self, num_inputs, num_outputs):
|
|
super().__init__()
|
|
|
|
self.layers = torch.nn.Sequential(
|
|
# 1st hidden layer
|
|
torch.nn.Linear(num_inputs, 30),
|
|
torch.nn.ReLU(),
|
|
|
|
# 2nd hidden layer
|
|
torch.nn.Linear(30, 20),
|
|
torch.nn.ReLU(),
|
|
|
|
# output layer
|
|
torch.nn.Linear(20, num_outputs),
|
|
)
|
|
|
|
def forward(self, x):
|
|
logits = self.layers(x)
|
|
return logits
|
|
|
|
|
|
def prepare_dataset():
|
|
X_train = torch.tensor([
|
|
[-1.2, 3.1],
|
|
[-0.9, 2.9],
|
|
[-0.5, 2.6],
|
|
[2.3, -1.1],
|
|
[2.7, -1.5]
|
|
])
|
|
y_train = torch.tensor([0, 0, 0, 1, 1])
|
|
|
|
X_test = torch.tensor([
|
|
[-0.8, 2.8],
|
|
[2.6, -1.6],
|
|
])
|
|
y_test = torch.tensor([0, 1])
|
|
|
|
# Uncomment these lines to increase the dataset size to run this script on up to 8 GPUs:
|
|
# factor = 4
|
|
# X_train = torch.cat([X_train + torch.randn_like(X_train) * 0.1 for _ in range(factor)])
|
|
# y_train = y_train.repeat(factor)
|
|
# X_test = torch.cat([X_test + torch.randn_like(X_test) * 0.1 for _ in range(factor)])
|
|
# y_test = y_test.repeat(factor)
|
|
|
|
train_ds = ToyDataset(X_train, y_train)
|
|
test_ds = ToyDataset(X_test, y_test)
|
|
|
|
train_loader = DataLoader(
|
|
dataset=train_ds,
|
|
batch_size=2,
|
|
shuffle=False, # NEW: False because of DistributedSampler below
|
|
pin_memory=True,
|
|
drop_last=True,
|
|
# NEW: chunk batches across GPUs without overlapping samples:
|
|
sampler=DistributedSampler(train_ds) # NEW
|
|
)
|
|
test_loader = DataLoader(
|
|
dataset=test_ds,
|
|
batch_size=2,
|
|
shuffle=False,
|
|
)
|
|
return train_loader, test_loader
|
|
|
|
|
|
# NEW: wrapper
|
|
def main(rank, world_size, num_epochs):
|
|
|
|
ddp_setup(rank, world_size) # NEW: initialize process groups
|
|
|
|
train_loader, test_loader = prepare_dataset()
|
|
model = NeuralNetwork(num_inputs=2, num_outputs=2)
|
|
model.to(rank)
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
|
|
|
|
model = DDP(model, device_ids=[rank]) # NEW: wrap model with DDP
|
|
# the core model is now accessible as model.module
|
|
|
|
for epoch in range(num_epochs):
|
|
# NEW: Set sampler to ensure each epoch has a different shuffle order
|
|
train_loader.sampler.set_epoch(epoch)
|
|
|
|
model.train()
|
|
for features, labels in train_loader:
|
|
|
|
features, labels = features.to(rank), labels.to(rank) # New: use rank
|
|
logits = model(features)
|
|
loss = F.cross_entropy(logits, labels) # Loss function
|
|
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
# LOGGING
|
|
print(f"[GPU{rank}] Epoch: {epoch+1:03d}/{num_epochs:03d}"
|
|
f" | Batchsize {labels.shape[0]:03d}"
|
|
f" | Train/Val Loss: {loss:.2f}")
|
|
|
|
model.eval()
|
|
|
|
try:
|
|
train_acc = compute_accuracy(model, train_loader, device=rank)
|
|
print(f"[GPU{rank}] Training accuracy", train_acc)
|
|
test_acc = compute_accuracy(model, test_loader, device=rank)
|
|
print(f"[GPU{rank}] Test accuracy", test_acc)
|
|
|
|
####################################################
|
|
# NEW (not in the book):
|
|
except ZeroDivisionError as e:
|
|
raise ZeroDivisionError(
|
|
f"{e}\n\nThis script is designed for 2 GPUs. You can run it as:\n"
|
|
"CUDA_VISIBLE_DEVICES=0,1 python DDP-script.py\n"
|
|
f"Or, to run it on {torch.cuda.device_count()} GPUs, uncomment the code on lines 103 to 107."
|
|
)
|
|
####################################################
|
|
|
|
destroy_process_group() # NEW: cleanly exit distributed mode
|
|
|
|
|
|
def compute_accuracy(model, dataloader, device):
|
|
model = model.eval()
|
|
correct = 0.0
|
|
total_examples = 0
|
|
|
|
for idx, (features, labels) in enumerate(dataloader):
|
|
features, labels = features.to(device), labels.to(device)
|
|
|
|
with torch.no_grad():
|
|
logits = model(features)
|
|
predictions = torch.argmax(logits, dim=1)
|
|
compare = labels == predictions
|
|
correct += torch.sum(compare)
|
|
total_examples += len(compare)
|
|
return (correct / total_examples).item()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# This script may not work for GPUs > 2 due to the small dataset
|
|
# Run `CUDA_VISIBLE_DEVICES=0,1 python DDP-script.py` if you have GPUs > 2
|
|
print("PyTorch version:", torch.__version__)
|
|
print("CUDA available:", torch.cuda.is_available())
|
|
print("Number of GPUs available:", torch.cuda.device_count())
|
|
torch.manual_seed(123)
|
|
|
|
# NEW: spawn new processes
|
|
# note that spawn will automatically pass the rank
|
|
num_epochs = 3
|
|
world_size = torch.cuda.device_count()
|
|
mp.spawn(main, args=(world_size, num_epochs), nprocs=world_size)
|
|
# nprocs=world_size spawns one process per GPU
|