mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-07-24 09:23:44 +00:00
166 lines
6.5 KiB
Python
166 lines
6.5 KiB
Python
# Source: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
||
# License:
|
||
# Modified MIT License
|
||
|
||
# Software Copyright (c) 2019 OpenAI
|
||
|
||
# We don’t claim ownership of the content you create with GPT-2, so it is yours to do with as you please.
|
||
# We only ask that you use GPT-2 responsibly and clearly indicate your content was created using GPT-2.
|
||
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
||
# associated documentation files (the "Software"), to deal in the Software without restriction,
|
||
# including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
|
||
# subject to the following conditions:
|
||
|
||
# The above copyright notice and this permission notice shall be included
|
||
# in all copies or substantial portions of the Software.
|
||
# The above copyright notice and this permission notice need not be included
|
||
# with content created by the Software.
|
||
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
||
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
||
# OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
||
import os
|
||
import json
|
||
import regex as re
|
||
import requests
|
||
from tqdm import tqdm
|
||
from functools import lru_cache
|
||
|
||
|
||
@lru_cache()
|
||
def bytes_to_unicode():
|
||
"""
|
||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||
The reversible bpe codes work on unicode strings.
|
||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||
This is a significant percentage of your normal, say, 32K bpe vocab.
|
||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||
"""
|
||
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
||
cs = bs[:]
|
||
n = 0
|
||
for b in range(2**8):
|
||
if b not in bs:
|
||
bs.append(b)
|
||
cs.append(2**8 + n)
|
||
n += 1
|
||
cs = [chr(n) for n in cs]
|
||
return dict(zip(bs, cs))
|
||
|
||
|
||
def get_pairs(word):
|
||
"""
|
||
Return set of symbol pairs in a word.
|
||
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||
"""
|
||
pairs = set()
|
||
prev_char = word[0]
|
||
for char in word[1:]:
|
||
pairs.add((prev_char, char))
|
||
prev_char = char
|
||
return pairs
|
||
|
||
|
||
class Encoder:
|
||
def __init__(self, encoder, bpe_merges, errors='replace'):
|
||
self.encoder = encoder
|
||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||
self.errors = errors # how to handle errors in decoding
|
||
self.byte_encoder = bytes_to_unicode()
|
||
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
||
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
||
self.cache = {}
|
||
|
||
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
||
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
||
|
||
def bpe(self, token):
|
||
if token in self.cache:
|
||
return self.cache[token]
|
||
word = tuple(token)
|
||
pairs = get_pairs(word)
|
||
|
||
if not pairs:
|
||
return token
|
||
|
||
while True:
|
||
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
||
if bigram not in self.bpe_ranks:
|
||
break
|
||
first, second = bigram
|
||
new_word = []
|
||
i = 0
|
||
while i < len(word):
|
||
try:
|
||
j = word.index(first, i)
|
||
new_word.extend(word[i:j])
|
||
i = j
|
||
except ValueError:
|
||
new_word.extend(word[i:])
|
||
break
|
||
|
||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||
new_word.append(first + second)
|
||
i += 2
|
||
else:
|
||
new_word.append(word[i])
|
||
i += 1
|
||
new_word = tuple(new_word)
|
||
word = new_word
|
||
if len(word) == 1:
|
||
break
|
||
else:
|
||
pairs = get_pairs(word)
|
||
word = ' '.join(word)
|
||
self.cache[token] = word
|
||
return word
|
||
|
||
def encode(self, text):
|
||
bpe_tokens = []
|
||
for token in re.findall(self.pat, text):
|
||
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
||
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
||
return bpe_tokens
|
||
|
||
def decode(self, tokens):
|
||
text = ''.join([self.decoder[token] for token in tokens])
|
||
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
|
||
return text
|
||
|
||
|
||
def get_encoder(model_name, models_dir):
|
||
with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:
|
||
encoder = json.load(f)
|
||
with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f:
|
||
bpe_data = f.read()
|
||
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
|
||
return Encoder(encoder=encoder, bpe_merges=bpe_merges)
|
||
|
||
|
||
def download_vocab():
|
||
# Modified code from
|
||
subdir = 'gpt2_model'
|
||
if not os.path.exists(subdir):
|
||
os.makedirs(subdir)
|
||
subdir = subdir.replace('\\', '/') # needed for Windows
|
||
|
||
for filename in ['encoder.json', 'vocab.bpe']:
|
||
r = requests.get("https://openaipublic.blob.core.windows.net/gpt-2/models/117M/" + filename, stream=True)
|
||
|
||
with open(os.path.join(subdir, filename), 'wb') as f:
|
||
file_size = int(r.headers["content-length"])
|
||
chunk_size = 1000
|
||
with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar:
|
||
# 1k for chunk_size, since Ethernet packet size is around 1500 bytes
|
||
for chunk in r.iter_content(chunk_size=chunk_size):
|
||
f.write(chunk)
|
||
pbar.update(chunk_size)
|