mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-06-26 23:50:03 +00:00

* Llama3 from scratch improvements * Cosmetic BPE improvements * restore * Update ch02/05_bpe-from-scratch/bpe-from-scratch.ipynb * Update ch02/05_bpe-from-scratch/bpe-from-scratch.ipynb * endoftext whitespace
1482 lines
52 KiB
Plaintext
1482 lines
52 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "9dec0dfb-3d60-41d0-a63a-b010dce67e32",
|
||
"metadata": {},
|
||
"source": [
|
||
"<table style=\"width:100%\">\n",
|
||
"<tr>\n",
|
||
"<td style=\"vertical-align:middle; text-align:left;\">\n",
|
||
"<font size=\"2\">\n",
|
||
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
|
||
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
|
||
"</font>\n",
|
||
"</td>\n",
|
||
"<td style=\"vertical-align:middle; text-align:left;\">\n",
|
||
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
|
||
"</td>\n",
|
||
"</tr>\n",
|
||
"</table>"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5e475425-8300-43f2-a5e8-6b5d2de59925",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Byte Pair Encoding (BPE) Tokenizer From Scratch"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a1bfc3f3-8ec1-4fd3-b378-d9a3d7807a54",
|
||
"metadata": {},
|
||
"source": [
|
||
"- This is a standalone notebook implementing the popular byte pair encoding (BPE) tokenization algorithm, which is used in models like GPT-2 to GPT-4, Llama 3, etc., from scratch for educational purposes\n",
|
||
"- For more details about the purpose of tokenization, please refer to [Chapter 2](https://github.com/rasbt/LLMs-from-scratch/blob/main/ch02/01_main-chapter-code/ch02.ipynb); this code here is bonus material explaining the BPE algorithm\n",
|
||
"- The original BPE tokenizer that OpenAI implemented for training the original GPT models can be found [here](https://github.com/openai/gpt-2/blob/master/src/encoder.py)\n",
|
||
"- The BPE algorithm was originally described in 1994: \"[A New Algorithm for Data Compression](http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM)\" by Philip Gage\n",
|
||
"- Most projects, including Llama 3, nowadays use OpenAI's open-source [tiktoken library](https://github.com/openai/tiktoken) due to its computational performance; it allows loading pretrained GPT-2 and GPT-4 tokenizers, for example (the Llama 3 models were trained using the GPT-4 tokenizer as well)\n",
|
||
"- The difference between the implementations above and my implementation in this notebook, besides it being is that it also includes a function for training the tokenizer (for educational purposes)\n",
|
||
"- There's also an implementation called [minBPE](https://github.com/karpathy/minbpe) with training support, which is maybe more performant (my implementation here is focused on educational purposes); in contrast to `minbpe` my implementation additionally allows loading the original OpenAI tokenizer vocabulary and BPE \"merges\" (additionally, Hugging Face tokenizers are also capable of training and loading various tokenizers; see [this GitHub discussion](https://github.com/rasbt/LLMs-from-scratch/discussions/485) by a reader who trained a BPE tokenizer on the Nepali language for more info)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f62336db-f45c-4894-9167-7583095dbdf1",
|
||
"metadata": {},
|
||
"source": [
|
||
" \n",
|
||
"# 1. The main idea behind byte pair encoding (BPE)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "cd3f1231-bd42-41b5-a017-974b8c660a44",
|
||
"metadata": {},
|
||
"source": [
|
||
"- The main idea in BPE is to convert text into an integer representation (token IDs) for LLM training (see [Chapter 2](https://github.com/rasbt/LLMs-from-scratch/blob/main/ch02/01_main-chapter-code/ch02.ipynb))\n",
|
||
"\n",
|
||
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/bpe-from-scratch/bpe-overview.webp\" width=\"600px\">"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "760c625d-26a1-4896-98a2-0fdcd1591256",
|
||
"metadata": {},
|
||
"source": [
|
||
" \n",
|
||
"## 1.1 Bits and bytes"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d4ddaa35-0ed7-4012-827e-911de11c266c",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Before getting to the BPE algorithm, let's introduce the notion of bytes\n",
|
||
"- Consider converting text into a byte array (BPE stands for \"byte\" pair encoding after all):"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "8c9bc9e4-120f-4bac-8fa6-6523c568d12e",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"bytearray(b'This is some text')\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"text = \"This is some text\"\n",
|
||
"byte_ary = bytearray(text, \"utf-8\")\n",
|
||
"print(byte_ary)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "dbd92a2a-9d74-4dc7-bb53-ac33d6cf2fab",
|
||
"metadata": {},
|
||
"source": [
|
||
"- When we call `list()` on a `bytearray` object, each byte is treated as an individual element, and the result is a list of integers corresponding to the byte values:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "6c586945-d459-4f9a-855d-bf73438ef0e3",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[84, 104, 105, 115, 32, 105, 115, 32, 115, 111, 109, 101, 32, 116, 101, 120, 116]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"ids = list(byte_ary)\n",
|
||
"print(ids)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "71efea37-f4c3-4cb8-bfa5-9299175faf9a",
|
||
"metadata": {},
|
||
"source": [
|
||
"- This would be a valid way to convert text into a token ID representation that we need for the embedding layer of an LLM\n",
|
||
"- However, the downside of this approach is that it is creating one ID for each character (that's a lot of IDs for a short text!)\n",
|
||
"- I.e., this means for a 17-character input text, we have to use 17 token IDs as input to the LLM:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "0d5b61d9-79a0-48b4-9b3e-64ab595c5b01",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Number of characters: 17\n",
|
||
"Number of token IDs: 17\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"Number of characters:\", len(text))\n",
|
||
"print(\"Number of token IDs:\", len(ids))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "68cc833a-c0d4-4d46-9180-c0042fd6addc",
|
||
"metadata": {},
|
||
"source": [
|
||
"- If you have worked with LLMs before, you may know that the BPE tokenizers have a vocabulary where we have a token ID for whole words or subwords instead of each character\n",
|
||
"- For example, the GPT-2 tokenizer tokenizes the same text (\"This is some text\") into only 4 instead of 17 tokens: `1212, 318, 617, 2420`\n",
|
||
"- You can double-check this using the interactive [tiktoken app](https://tiktokenizer.vercel.app/?model=gpt2) or the [tiktoken library](https://github.com/openai/tiktoken):\n",
|
||
"\n",
|
||
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/bpe-from-scratch/tiktokenizer.webp\" width=\"600px\">\n",
|
||
"\n",
|
||
"```python\n",
|
||
"import tiktoken\n",
|
||
"\n",
|
||
"gpt2_tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
||
"gpt2_tokenizer.encode(\"This is some text\")\n",
|
||
"# prints [1212, 318, 617, 2420]\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "425b99de-cbfc-441c-8b3e-296a5dd7bb27",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Since a byte consists of 8 bits, there are 2<sup>8</sup> = 256 possible values that a single byte can represent, ranging from 0 to 255\n",
|
||
"- You can confirm this by executing the code `bytearray(range(0, 257))`, which will warn you that `ValueError: byte must be in range(0, 256)`)\n",
|
||
"- A BPE tokenizer usually uses these 256 values as its first 256 single-character tokens; one could visually check this by running the following code:\n",
|
||
"\n",
|
||
"```python\n",
|
||
"import tiktoken\n",
|
||
"gpt2_tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
||
"\n",
|
||
"for i in range(300):\n",
|
||
" decoded = gpt2_tokenizer.decode([i])\n",
|
||
" print(f\"{i}: {decoded}\")\n",
|
||
"\"\"\"\n",
|
||
"prints:\n",
|
||
"0: !\n",
|
||
"1: \"\n",
|
||
"2: #\n",
|
||
"...\n",
|
||
"255: <20> # <---- single character tokens up to here\n",
|
||
"256: t\n",
|
||
"257: a\n",
|
||
"...\n",
|
||
"298: ent\n",
|
||
"299: n\n",
|
||
"\"\"\"\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "97ff0207-7f8e-44fa-9381-2a4bd83daab3",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Above, note that entries 256 and 257 are not single-character values but double-character values (a whitespace + a letter), which is a little shortcoming of the original GPT-2 BPE Tokenizer (this has been improved in the GPT-4 tokenizer)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8241c23a-d487-488d-bded-cdf054e24920",
|
||
"metadata": {},
|
||
"source": [
|
||
" \n",
|
||
"## 1.2 Building the vocabulary"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d7c2ceb7-0b3f-4a62-8dcc-07810cd8886e",
|
||
"metadata": {},
|
||
"source": [
|
||
"- The goal of the BPE tokenization algorithm is to build a vocabulary of commonly occurring subwords like `298: ent` (which can be found in *entangle, entertain, enter, entrance, entity, ...*, for example), or even complete words like \n",
|
||
"\n",
|
||
"```\n",
|
||
"318: is\n",
|
||
"617: some\n",
|
||
"1212: This\n",
|
||
"2420: text\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8c0d4420-a4c7-4813-916a-06f4f46bc3f0",
|
||
"metadata": {},
|
||
"source": [
|
||
"- The BPE algorithm was originally described in 1994: \"[A New Algorithm for Data Compression](http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM)\" by Philip Gage\n",
|
||
"- Before we get to the actual code implementation, the form that is used for LLM tokenizers today can be summarized as described in the following sections."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ebc71db9-b070-48c4-8412-81f45b308ab3",
|
||
"metadata": {},
|
||
"source": [
|
||
" \n",
|
||
"## 1.3 BPE algorithm outline\n",
|
||
"\n",
|
||
"**1. Identify frequent pairs**\n",
|
||
"- In each iteration, scan the text to find the most commonly occurring pair of bytes (or characters)\n",
|
||
"\n",
|
||
"**2. Replace and record**\n",
|
||
"\n",
|
||
"- Replace that pair with a new placeholder ID (one not already in use, e.g., if we start with 0...255, the first placeholder would be 256)\n",
|
||
"- Record this mapping in a lookup table\n",
|
||
"- The size of the lookup table is a hyperparameter, also called \"vocabulary size\" (for GPT-2, that's\n",
|
||
"50,257)\n",
|
||
"\n",
|
||
"**3. Repeat until no gains**\n",
|
||
"\n",
|
||
"- Keep repeating steps 1 and 2, continually merging the most frequent pairs\n",
|
||
"- Stop when no further compression is possible (e.g., no pair occurs more than once)\n",
|
||
"\n",
|
||
"**Decompression (decoding)**\n",
|
||
"\n",
|
||
"- To restore the original text, reverse the process by substituting each ID with its corresponding pair, using the lookup table\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e9f5ac9a-3528-4186-9468-8420c7b2ac00",
|
||
"metadata": {},
|
||
"source": [
|
||
" \n",
|
||
"## 1.4 BPE algorithm example\n",
|
||
"\n",
|
||
"### 1.4.1 Concrete example of the encoding part (steps 1 & 2 in section 1.3)\n",
|
||
"\n",
|
||
"- Suppose we have the text (training dataset) `the cat in the hat` from which we want to build the vocabulary for a BPE tokenizer\n",
|
||
"\n",
|
||
"**Iteration 1**\n",
|
||
"\n",
|
||
"1. Identify frequent pairs\n",
|
||
" - In this text, \"th\" appears twice (at the beginning and before the second \"e\")\n",
|
||
"\n",
|
||
"2. Replace and record\n",
|
||
" - replace \"th\" with a new token ID that is not already in use, e.g., 256\n",
|
||
" - the new text is: `<256>e cat in <256>e hat`\n",
|
||
" - the new vocabulary is\n",
|
||
"\n",
|
||
"```\n",
|
||
" 0: ...\n",
|
||
" ...\n",
|
||
" 256: \"th\"\n",
|
||
"```\n",
|
||
"\n",
|
||
"**Iteration 2**\n",
|
||
"\n",
|
||
"1. **Identify frequent pairs** \n",
|
||
" - In the text `<256>e cat in <256>e hat`, the pair `<256>e` appears twice\n",
|
||
"\n",
|
||
"2. **Replace and record** \n",
|
||
" - replace `<256>e` with a new token ID that is not already in use, for example, `257`. \n",
|
||
" - The new text is:\n",
|
||
" ```\n",
|
||
" <257> cat in <257> hat\n",
|
||
" ```\n",
|
||
" - The updated vocabulary is:\n",
|
||
" ```\n",
|
||
" 0: ...\n",
|
||
" ...\n",
|
||
" 256: \"th\"\n",
|
||
" 257: \"<256>e\"\n",
|
||
" ```\n",
|
||
"\n",
|
||
"**Iteration 3**\n",
|
||
"\n",
|
||
"1. **Identify frequent pairs** \n",
|
||
" - In the text `<257> cat in <257> hat`, the pair `<257> ` appears twice (once at the beginning and once before “hat”).\n",
|
||
"\n",
|
||
"2. **Replace and record** \n",
|
||
" - replace `<257> ` with a new token ID that is not already in use, for example, `258`. \n",
|
||
" - the new text is:\n",
|
||
" ```\n",
|
||
" <258>cat in <258>hat\n",
|
||
" ```\n",
|
||
" - The updated vocabulary is:\n",
|
||
" ```\n",
|
||
" 0: ...\n",
|
||
" ...\n",
|
||
" 256: \"th\"\n",
|
||
" 257: \"<256>e\"\n",
|
||
" 258: \"<257> \"\n",
|
||
" ```\n",
|
||
" \n",
|
||
"- and so forth\n",
|
||
"\n",
|
||
" \n",
|
||
"### 1.4.2 Concrete example of the decoding part (step 3 in section 1.3)\n",
|
||
"\n",
|
||
"- To restore the original text, we reverse the process by substituting each token ID with its corresponding pair in the reverse order they were introduced\n",
|
||
"- Start with the final compressed text: `<258>cat in <258>hat`\n",
|
||
"- Substitute `<258>` → `<257> `: `<257> cat in <257> hat` \n",
|
||
"- Substitute `<257>` → `<256>e`: `<256>e cat in <256>e hat`\n",
|
||
"- Substitute `<256>` → \"th\": `the cat in the hat`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a2324948-ddd0-45d1-8ba8-e8eda9fc6677",
|
||
"metadata": {},
|
||
"source": [
|
||
" \n",
|
||
"## 2. A simple BPE implementation"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "429ca709-40d7-4e3d-bf3e-4f5687a2e19b",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Below is an implementation of this algorithm described above as a Python class that mimics the `tiktoken` Python user interface\n",
|
||
"- Note that the encoding part above describes the original training step via `train()`; however, the `encode()` method works similarly (although it looks a bit more complicated because of the special token handling):\n",
|
||
"\n",
|
||
"1. Split the input text into individual bytes\n",
|
||
"2. Repeatedly find & replace (merge) adjacent tokens (pairs) when they match any pair in the learned BPE merges (from highest to lowest \"rank,\" i.e., in the order they were learned)\n",
|
||
"3. Continue merging until no more merges can be applied\n",
|
||
"4. The final list of token IDs is the encoded output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "3e4a15ec-2667-4f56-b7c1-34e8071b621d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from collections import Counter, deque\n",
|
||
"from functools import lru_cache\n",
|
||
"import json\n",
|
||
"\n",
|
||
"\n",
|
||
"class BPETokenizerSimple:\n",
|
||
" def __init__(self):\n",
|
||
" # Maps token_id to token_str (e.g., {11246: \"some\"})\n",
|
||
" self.vocab = {}\n",
|
||
" # Maps token_str to token_id (e.g., {\"some\": 11246})\n",
|
||
" self.inverse_vocab = {}\n",
|
||
" # Dictionary of BPE merges: {(token_id1, token_id2): merged_token_id}\n",
|
||
" self.bpe_merges = {}\n",
|
||
"\n",
|
||
" # For the official OpenAI GPT-2 merges, use a rank dict:\n",
|
||
" # of form {(string_A, string_B): rank}, where lower rank = higher priority\n",
|
||
" self.bpe_ranks = {}\n",
|
||
"\n",
|
||
" def train(self, text, vocab_size, allowed_special={\"<|endoftext|>\"}):\n",
|
||
" \"\"\"\n",
|
||
" Train the BPE tokenizer from scratch.\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" text (str): The training text.\n",
|
||
" vocab_size (int): The desired vocabulary size.\n",
|
||
" allowed_special (set): A set of special tokens to include.\n",
|
||
" \"\"\"\n",
|
||
"\n",
|
||
" # Preprocess: Replace spaces with \"Ġ\"\n",
|
||
" # Note that Ġ is a particularity of the GPT-2 BPE implementation\n",
|
||
" # E.g., \"Hello world\" might be tokenized as [\"Hello\", \"Ġworld\"]\n",
|
||
" # (GPT-4 BPE would tokenize it as [\"Hello\", \" world\"])\n",
|
||
" processed_text = []\n",
|
||
" for i, char in enumerate(text):\n",
|
||
" if char == \" \" and i != 0:\n",
|
||
" processed_text.append(\"Ġ\")\n",
|
||
" if char != \" \":\n",
|
||
" processed_text.append(char)\n",
|
||
" processed_text = \"\".join(processed_text)\n",
|
||
"\n",
|
||
" # Initialize vocab with unique characters, including \"Ġ\" if present\n",
|
||
" # Start with the first 256 ASCII characters\n",
|
||
" unique_chars = [chr(i) for i in range(256)]\n",
|
||
" unique_chars.extend(\n",
|
||
" char for char in sorted(set(processed_text))\n",
|
||
" if char not in unique_chars\n",
|
||
" )\n",
|
||
" if \"Ġ\" not in unique_chars:\n",
|
||
" unique_chars.append(\"Ġ\")\n",
|
||
"\n",
|
||
" self.vocab = {i: char for i, char in enumerate(unique_chars)}\n",
|
||
" self.inverse_vocab = {char: i for i, char in self.vocab.items()}\n",
|
||
"\n",
|
||
" # Add allowed special tokens\n",
|
||
" if allowed_special:\n",
|
||
" for token in allowed_special:\n",
|
||
" if token not in self.inverse_vocab:\n",
|
||
" new_id = len(self.vocab)\n",
|
||
" self.vocab[new_id] = token\n",
|
||
" self.inverse_vocab[token] = new_id\n",
|
||
"\n",
|
||
" # Tokenize the processed_text into token IDs\n",
|
||
" token_ids = [self.inverse_vocab[char] for char in processed_text]\n",
|
||
"\n",
|
||
" # BPE steps 1-3: Repeatedly find and replace frequent pairs\n",
|
||
" for new_id in range(len(self.vocab), vocab_size):\n",
|
||
" pair_id = self.find_freq_pair(token_ids, mode=\"most\")\n",
|
||
" if pair_id is None:\n",
|
||
" break\n",
|
||
" token_ids = self.replace_pair(token_ids, pair_id, new_id)\n",
|
||
" self.bpe_merges[pair_id] = new_id\n",
|
||
"\n",
|
||
" # Build the vocabulary with merged tokens\n",
|
||
" for (p0, p1), new_id in self.bpe_merges.items():\n",
|
||
" merged_token = self.vocab[p0] + self.vocab[p1]\n",
|
||
" self.vocab[new_id] = merged_token\n",
|
||
" self.inverse_vocab[merged_token] = new_id\n",
|
||
"\n",
|
||
" def load_vocab_and_merges_from_openai(self, vocab_path, bpe_merges_path):\n",
|
||
" \"\"\"\n",
|
||
" Load pre-trained vocabulary and BPE merges from OpenAI's GPT-2 files.\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" vocab_path (str): Path to the vocab file (GPT-2 calls it 'encoder.json').\n",
|
||
" bpe_merges_path (str): Path to the bpe_merges file (GPT-2 calls it 'vocab.bpe').\n",
|
||
" \"\"\"\n",
|
||
" # Load vocabulary\n",
|
||
" with open(vocab_path, \"r\", encoding=\"utf-8\") as file:\n",
|
||
" loaded_vocab = json.load(file)\n",
|
||
" # Convert loaded vocabulary to correct format\n",
|
||
" self.vocab = {int(v): k for k, v in loaded_vocab.items()}\n",
|
||
" self.inverse_vocab = {k: int(v) for k, v in loaded_vocab.items()}\n",
|
||
"\n",
|
||
" # Handle newline character without adding a new token\n",
|
||
" if \"\\n\" not in self.inverse_vocab:\n",
|
||
" # Use an existing token ID as a placeholder for '\\n'\n",
|
||
" # Preferentially use \"<|endoftext|>\" if available\n",
|
||
" fallback_token = next((token for token in [\"<|endoftext|>\", \"Ġ\", \"\"] if token in self.inverse_vocab), None)\n",
|
||
" if fallback_token is not None:\n",
|
||
" newline_token_id = self.inverse_vocab[fallback_token]\n",
|
||
" else:\n",
|
||
" # If no fallback token is available, raise an error\n",
|
||
" raise KeyError(\"No suitable token found in vocabulary to map '\\\\n'.\")\n",
|
||
"\n",
|
||
" self.inverse_vocab[\"\\n\"] = newline_token_id\n",
|
||
" self.vocab[newline_token_id] = \"\\n\"\n",
|
||
"\n",
|
||
" # Load GPT-2 merges and store them with an assigned \"rank\"\n",
|
||
" self.bpe_ranks = {} # reset ranks\n",
|
||
" with open(bpe_merges_path, \"r\", encoding=\"utf-8\") as file:\n",
|
||
" lines = file.readlines()\n",
|
||
" if lines and lines[0].startswith(\"#\"):\n",
|
||
" lines = lines[1:]\n",
|
||
"\n",
|
||
" rank = 0\n",
|
||
" for line in lines:\n",
|
||
" pair = tuple(line.strip().split())\n",
|
||
" if len(pair) == 2:\n",
|
||
" token1, token2 = pair\n",
|
||
" # If token1 or token2 not in vocab, skip\n",
|
||
" if token1 in self.inverse_vocab and token2 in self.inverse_vocab:\n",
|
||
" self.bpe_ranks[(token1, token2)] = rank\n",
|
||
" rank += 1\n",
|
||
" else:\n",
|
||
" print(f\"Skipping pair {pair} as one token is not in the vocabulary.\")\n",
|
||
"\n",
|
||
" def encode(self, text, allowed_special=None):\n",
|
||
" \"\"\"\n",
|
||
" Encode the input text into a list of token IDs, with tiktoken-style handling of special tokens.\n",
|
||
" \n",
|
||
" Args:\n",
|
||
" text (str): The input text to encode.\n",
|
||
" allowed_special (set or None): Special tokens to allow passthrough. If None, special handling is disabled.\n",
|
||
" \n",
|
||
" Returns:\n",
|
||
" List of token IDs.\n",
|
||
" \"\"\"\n",
|
||
" import re\n",
|
||
" \n",
|
||
" token_ids = []\n",
|
||
" \n",
|
||
" # If special token handling is enabled\n",
|
||
" if allowed_special is not None and len(allowed_special) > 0:\n",
|
||
" # Build regex to match allowed special tokens\n",
|
||
" special_pattern = (\n",
|
||
" \"(\" + \"|\".join(re.escape(tok) for tok in sorted(allowed_special, key=len, reverse=True)) + \")\"\n",
|
||
" )\n",
|
||
" \n",
|
||
" last_index = 0\n",
|
||
" for match in re.finditer(special_pattern, text):\n",
|
||
" prefix = text[last_index:match.start()]\n",
|
||
" token_ids.extend(self.encode(prefix, allowed_special=None)) # Encode prefix without special handling\n",
|
||
" \n",
|
||
" special_token = match.group(0)\n",
|
||
" if special_token in self.inverse_vocab:\n",
|
||
" token_ids.append(self.inverse_vocab[special_token])\n",
|
||
" else:\n",
|
||
" raise ValueError(f\"Special token {special_token} not found in vocabulary.\")\n",
|
||
" last_index = match.end()\n",
|
||
" \n",
|
||
" text = text[last_index:] # Remaining part to process normally\n",
|
||
" \n",
|
||
" # Check if any disallowed special tokens are in the remainder\n",
|
||
" disallowed = [\n",
|
||
" tok for tok in self.inverse_vocab\n",
|
||
" if tok.startswith(\"<|\") and tok.endswith(\"|>\") and tok in text and tok not in allowed_special\n",
|
||
" ]\n",
|
||
" if disallowed:\n",
|
||
" raise ValueError(f\"Disallowed special tokens encountered in text: {disallowed}\")\n",
|
||
" \n",
|
||
" # If no special tokens, or remaining text after special token split:\n",
|
||
" tokens = []\n",
|
||
" lines = text.split(\"\\n\")\n",
|
||
" for i, line in enumerate(lines):\n",
|
||
" if i > 0:\n",
|
||
" tokens.append(\"\\n\")\n",
|
||
" words = line.split()\n",
|
||
" for j, word in enumerate(words):\n",
|
||
" if j == 0 and i > 0:\n",
|
||
" tokens.append(\"Ġ\" + word)\n",
|
||
" elif j == 0:\n",
|
||
" tokens.append(word)\n",
|
||
" else:\n",
|
||
" tokens.append(\"Ġ\" + word)\n",
|
||
" \n",
|
||
" for token in tokens:\n",
|
||
" if token in self.inverse_vocab:\n",
|
||
" token_ids.append(self.inverse_vocab[token])\n",
|
||
" else:\n",
|
||
" token_ids.extend(self.tokenize_with_bpe(token))\n",
|
||
" \n",
|
||
" return token_ids\n",
|
||
"\n",
|
||
" def tokenize_with_bpe(self, token):\n",
|
||
" \"\"\"\n",
|
||
" Tokenize a single token using BPE merges.\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" token (str): The token to tokenize.\n",
|
||
"\n",
|
||
" Returns:\n",
|
||
" List[int]: The list of token IDs after applying BPE.\n",
|
||
" \"\"\"\n",
|
||
" # Tokenize the token into individual characters (as initial token IDs)\n",
|
||
" token_ids = [self.inverse_vocab.get(char, None) for char in token]\n",
|
||
" if None in token_ids:\n",
|
||
" missing_chars = [char for char, tid in zip(token, token_ids) if tid is None]\n",
|
||
" raise ValueError(f\"Characters not found in vocab: {missing_chars}\")\n",
|
||
"\n",
|
||
" # If we haven't loaded OpenAI's GPT-2 merges, use my approach\n",
|
||
" if not self.bpe_ranks:\n",
|
||
" can_merge = True\n",
|
||
" while can_merge and len(token_ids) > 1:\n",
|
||
" can_merge = False\n",
|
||
" new_tokens = []\n",
|
||
" i = 0\n",
|
||
" while i < len(token_ids) - 1:\n",
|
||
" pair = (token_ids[i], token_ids[i + 1])\n",
|
||
" if pair in self.bpe_merges:\n",
|
||
" merged_token_id = self.bpe_merges[pair]\n",
|
||
" new_tokens.append(merged_token_id)\n",
|
||
" # Uncomment for educational purposes:\n",
|
||
" # print(f\"Merged pair {pair} -> {merged_token_id} ('{self.vocab[merged_token_id]}')\")\n",
|
||
" i += 2 # Skip the next token as it's merged\n",
|
||
" can_merge = True\n",
|
||
" else:\n",
|
||
" new_tokens.append(token_ids[i])\n",
|
||
" i += 1\n",
|
||
" if i < len(token_ids):\n",
|
||
" new_tokens.append(token_ids[i])\n",
|
||
" token_ids = new_tokens\n",
|
||
" return token_ids\n",
|
||
"\n",
|
||
" # Otherwise, do GPT-2-style merging with the ranks:\n",
|
||
" # 1) Convert token_ids back to string \"symbols\" for each ID\n",
|
||
" symbols = [self.vocab[id_num] for id_num in token_ids]\n",
|
||
"\n",
|
||
" # Repeatedly merge all occurrences of the lowest-rank pair\n",
|
||
" while True:\n",
|
||
" # Collect all adjacent pairs\n",
|
||
" pairs = set(zip(symbols, symbols[1:]))\n",
|
||
" if not pairs:\n",
|
||
" break\n",
|
||
"\n",
|
||
" # Find the pair with the best (lowest) rank\n",
|
||
" min_rank = float(\"inf\")\n",
|
||
" bigram = None\n",
|
||
" for p in pairs:\n",
|
||
" r = self.bpe_ranks.get(p, float(\"inf\"))\n",
|
||
" if r < min_rank:\n",
|
||
" min_rank = r\n",
|
||
" bigram = p\n",
|
||
"\n",
|
||
" # If no valid ranked pair is present, we're done\n",
|
||
" if bigram is None or bigram not in self.bpe_ranks:\n",
|
||
" break\n",
|
||
"\n",
|
||
" # Merge all occurrences of that pair\n",
|
||
" first, second = bigram\n",
|
||
" new_symbols = []\n",
|
||
" i = 0\n",
|
||
" while i < len(symbols):\n",
|
||
" # If we see (first, second) at position i, merge them\n",
|
||
" if i < len(symbols) - 1 and symbols[i] == first and symbols[i+1] == second:\n",
|
||
" new_symbols.append(first + second) # merged symbol\n",
|
||
" i += 2\n",
|
||
" else:\n",
|
||
" new_symbols.append(symbols[i])\n",
|
||
" i += 1\n",
|
||
" symbols = new_symbols\n",
|
||
"\n",
|
||
" if len(symbols) == 1:\n",
|
||
" break\n",
|
||
"\n",
|
||
" # Finally, convert merged symbols back to IDs\n",
|
||
" merged_ids = [self.inverse_vocab[sym] for sym in symbols]\n",
|
||
" return merged_ids\n",
|
||
"\n",
|
||
" def decode(self, token_ids):\n",
|
||
" \"\"\"\n",
|
||
" Decode a list of token IDs back into a string.\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" token_ids (List[int]): The list of token IDs to decode.\n",
|
||
"\n",
|
||
" Returns:\n",
|
||
" str: The decoded string.\n",
|
||
" \"\"\"\n",
|
||
" decoded_string = \"\"\n",
|
||
" for i, token_id in enumerate(token_ids):\n",
|
||
" if token_id not in self.vocab:\n",
|
||
" raise ValueError(f\"Token ID {token_id} not found in vocab.\")\n",
|
||
" token = self.vocab[token_id]\n",
|
||
" if token == \"\\n\":\n",
|
||
" if decoded_string and not decoded_string.endswith(\" \"):\n",
|
||
" decoded_string += \" \" # Add space if not present before a newline\n",
|
||
" decoded_string += token\n",
|
||
" elif token.startswith(\"Ġ\"):\n",
|
||
" decoded_string += \" \" + token[1:]\n",
|
||
" else:\n",
|
||
" decoded_string += token\n",
|
||
" return decoded_string\n",
|
||
"\n",
|
||
" def save_vocab_and_merges(self, vocab_path, bpe_merges_path):\n",
|
||
" \"\"\"\n",
|
||
" Save the vocabulary and BPE merges to JSON files.\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" vocab_path (str): Path to save the vocabulary.\n",
|
||
" bpe_merges_path (str): Path to save the BPE merges.\n",
|
||
" \"\"\"\n",
|
||
" # Save vocabulary\n",
|
||
" with open(vocab_path, \"w\", encoding=\"utf-8\") as file:\n",
|
||
" json.dump(self.vocab, file, ensure_ascii=False, indent=2)\n",
|
||
"\n",
|
||
" # Save BPE merges as a list of dictionaries\n",
|
||
" with open(bpe_merges_path, \"w\", encoding=\"utf-8\") as file:\n",
|
||
" merges_list = [{\"pair\": list(pair), \"new_id\": new_id}\n",
|
||
" for pair, new_id in self.bpe_merges.items()]\n",
|
||
" json.dump(merges_list, file, ensure_ascii=False, indent=2)\n",
|
||
"\n",
|
||
" def load_vocab_and_merges(self, vocab_path, bpe_merges_path):\n",
|
||
" \"\"\"\n",
|
||
" Load the vocabulary and BPE merges from JSON files.\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" vocab_path (str): Path to the vocabulary file.\n",
|
||
" bpe_merges_path (str): Path to the BPE merges file.\n",
|
||
" \"\"\"\n",
|
||
" # Load vocabulary\n",
|
||
" with open(vocab_path, \"r\", encoding=\"utf-8\") as file:\n",
|
||
" loaded_vocab = json.load(file)\n",
|
||
" self.vocab = {int(k): v for k, v in loaded_vocab.items()}\n",
|
||
" self.inverse_vocab = {v: int(k) for k, v in loaded_vocab.items()}\n",
|
||
"\n",
|
||
" # Load BPE merges\n",
|
||
" with open(bpe_merges_path, \"r\", encoding=\"utf-8\") as file:\n",
|
||
" merges_list = json.load(file)\n",
|
||
" for merge in merges_list:\n",
|
||
" pair = tuple(merge[\"pair\"])\n",
|
||
" new_id = merge[\"new_id\"]\n",
|
||
" self.bpe_merges[pair] = new_id\n",
|
||
"\n",
|
||
" @lru_cache(maxsize=None)\n",
|
||
" def get_special_token_id(self, token):\n",
|
||
" return self.inverse_vocab.get(token, None)\n",
|
||
"\n",
|
||
" @staticmethod\n",
|
||
" def find_freq_pair(token_ids, mode=\"most\"):\n",
|
||
" pairs = Counter(zip(token_ids, token_ids[1:]))\n",
|
||
"\n",
|
||
" if not pairs:\n",
|
||
" return None\n",
|
||
"\n",
|
||
" if mode == \"most\":\n",
|
||
" return max(pairs.items(), key=lambda x: x[1])[0]\n",
|
||
" elif mode == \"least\":\n",
|
||
" return min(pairs.items(), key=lambda x: x[1])[0]\n",
|
||
" else:\n",
|
||
" raise ValueError(\"Invalid mode. Choose 'most' or 'least'.\")\n",
|
||
"\n",
|
||
" @staticmethod\n",
|
||
" def replace_pair(token_ids, pair_id, new_id):\n",
|
||
" dq = deque(token_ids)\n",
|
||
" replaced = []\n",
|
||
"\n",
|
||
" while dq:\n",
|
||
" current = dq.popleft()\n",
|
||
" if dq and (current, dq[0]) == pair_id:\n",
|
||
" replaced.append(new_id)\n",
|
||
" # Remove the 2nd token of the pair, 1st was already removed\n",
|
||
" dq.popleft()\n",
|
||
" else:\n",
|
||
" replaced.append(current)\n",
|
||
"\n",
|
||
" return replaced"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "46db7310-79c7-4ee0-b5fa-d760c6e1aa67",
|
||
"metadata": {},
|
||
"source": [
|
||
"- There is a lot of code in the `BPETokenizerSimple` class above, and discussing it in detail is out of scope for this notebook, but the next section offers a short overview of the usage to understand the class methods a bit better"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8ffe1836-eed4-40dc-860b-2d23074d067e",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 3. BPE implementation walkthrough"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "3c7c996c-fd34-484f-a877-13d977214cf7",
|
||
"metadata": {},
|
||
"source": [
|
||
"- In practice, I highly recommend using [tiktoken](https://github.com/openai/tiktoken) as my implementation above focuses on readability and educational purposes, not on performance\n",
|
||
"- However, the usage is more or less similar to tiktoken, except that tiktoken does not have a training method\n",
|
||
"- Let's see how my `BPETokenizerSimple` Python code above works by looking at some examples below (a detailed code discussion is out of scope for this notebook)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e82acaf6-7ed5-4d3b-81c0-ae4d3559d2c7",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 3.1 Training, encoding, and decoding"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "962bf037-903e-4555-b09c-206e1a410278",
|
||
"metadata": {},
|
||
"source": [
|
||
"- First, let's consider some sample text as our training dataset:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "51872c08-e01b-40c3-a8a0-e8d6a773e3df",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"the-verdict.txt already exists in ./the-verdict.txt\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import os\n",
|
||
"import urllib.request\n",
|
||
"\n",
|
||
"def download_file_if_absent(url, filename, search_dirs):\n",
|
||
" for directory in search_dirs:\n",
|
||
" file_path = os.path.join(directory, filename)\n",
|
||
" if os.path.exists(file_path):\n",
|
||
" print(f\"{filename} already exists in {file_path}\")\n",
|
||
" return file_path\n",
|
||
"\n",
|
||
" target_path = os.path.join(search_dirs[0], filename)\n",
|
||
" try:\n",
|
||
" with urllib.request.urlopen(url) as response, open(target_path, \"wb\") as out_file:\n",
|
||
" out_file.write(response.read())\n",
|
||
" print(f\"Downloaded {filename} to {target_path}\")\n",
|
||
" except Exception as e:\n",
|
||
" print(f\"Failed to download {filename}. Error: {e}\")\n",
|
||
" return target_path\n",
|
||
"\n",
|
||
"verdict_path = download_file_if_absent(\n",
|
||
" url=(\n",
|
||
" \"https://raw.githubusercontent.com/rasbt/\"\n",
|
||
" \"LLMs-from-scratch/main/ch02/01_main-chapter-code/\"\n",
|
||
" \"the-verdict.txt\"\n",
|
||
" ),\n",
|
||
" filename=\"the-verdict.txt\",\n",
|
||
" search_dirs=\".\"\n",
|
||
")\n",
|
||
"\n",
|
||
"with open(verdict_path, \"r\", encoding=\"utf-8\") as f: # added ../01_main-chapter-code/\n",
|
||
" text = f.read()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "04d1b6ac-71d3-4817-956a-9bc7e463a84a",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Next, let's initialize and train the BPE tokenizer with a vocabulary size of 1,000\n",
|
||
"- Note that the vocabulary size is already 256 by default due to the byte values discussed earlier, so we are only \"learning\" 744 vocabulary entries (if we consider the `<|endoftext|>` special token and the `Ġ` whitespace token; so, that's 742 to be precise)\n",
|
||
"- For comparison, the GPT-2 vocabulary is 50,257 tokens, the GPT-4 vocabulary is 100,256 tokens (`cl100k_base` in tiktoken), and GPT-4o uses 199,997 tokens (`o200k_base` in tiktoken); they have all much bigger training sets compared to our simple example text above"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "027348fd-d52f-4396-93dd-38eed142df9b",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"tokenizer = BPETokenizerSimple()\n",
|
||
"tokenizer.train(text, vocab_size=1000, allowed_special={\"<|endoftext|>\"})"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2474ff05-5629-4f13-9e03-a47b1e713850",
|
||
"metadata": {},
|
||
"source": [
|
||
"- You may want to inspect the vocabulary contents (but note it will create a long list)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "f705a283-355e-4460-b940-06bbc2ae4e61",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"1000\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# print(tokenizer.vocab)\n",
|
||
"print(len(tokenizer.vocab))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "36c9da0f-8a18-41cd-91ea-9ccc2bb5febb",
|
||
"metadata": {},
|
||
"source": [
|
||
"- This vocabulary is created by merging 742 times (`= 1000 - len(range(0, 256)) - len(special_tokens) - \"Ġ\" = 1000 - 256 - 1 - 1 = 742`)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "3da42d1c-f75c-4ba7-a6c5-4cb8543d4a44",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"742\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(len(tokenizer.bpe_merges))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5dac69c9-8413-482a-8148-6b2afbf1fb89",
|
||
"metadata": {},
|
||
"source": [
|
||
"- This means that the first 256 entries are single-character tokens"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "451a4108-7c8b-4b98-9c67-d622e9cdf250",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Next, let's use the created merges via the `encode` method to encode some text:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "e1db5cce-e015-412b-ad56-060b8b638078",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"input_text = \"Jack embraced beauty through art and life.\"\n",
|
||
"token_ids = tokenizer.encode(input_text)\n",
|
||
"print(token_ids)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "78249752-38d7-47b9-b259-912bcc093dc4",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46, 60, 124, 271, 683, 102, 116, 461, 116, 124, 62]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"input_text = \"Jack embraced beauty through art and life.<|endoftext|> \"\n",
|
||
"token_ids = tokenizer.encode(input_text)\n",
|
||
"print(token_ids)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "0331d37d-49a3-44f7-9aa9-9834e0938741",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46, 257]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"input_text = \"Jack embraced beauty through art and life.<|endoftext|> \"\n",
|
||
"token_ids = tokenizer.encode(input_text, allowed_special={\"<|endoftext|>\"})\n",
|
||
"print(token_ids)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "1ed1b344-f7d4-4e9e-ac34-2a04b5c5b7a8",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Number of characters: 56\n",
|
||
"Number of token IDs: 21\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(\"Number of characters:\", len(input_text))\n",
|
||
"print(\"Number of token IDs:\", len(token_ids))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "50c1cfb9-402a-4e1e-9678-0b7547406248",
|
||
"metadata": {},
|
||
"source": [
|
||
"- From the lengths above, we can see that a 42-character sentence was encoded into 20 token IDs, effectively cutting the input length roughly in half compared to a character-byte-based encoding"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "252693ee-e806-4dac-ab76-2c69086360f4",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Note that the vocabulary itself is used in the `decode()` method, which allows us to map the token IDs back into text:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"id": "da0e1faf-1933-43d9-b681-916c282a8f86",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46, 257]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(token_ids)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"id": "8b690e83-5d6b-409a-804e-321c287c24a4",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Jack embraced beauty through art and life.<|endoftext|>\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(tokenizer.decode(token_ids))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "adea5d09-e5ef-4721-994b-b9b25662fa0a",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Iterating over each token ID can give us a better understanding of how the token IDs are decoded via the vocabulary:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"id": "2b9e6289-92cb-4d88-b3c8-e836d7c8095f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"424 -> Jack\n",
|
||
"256 -> \n",
|
||
"654 -> em\n",
|
||
"531 -> br\n",
|
||
"302 -> ac\n",
|
||
"311 -> ed\n",
|
||
"256 -> \n",
|
||
"296 -> be\n",
|
||
"97 -> a\n",
|
||
"465 -> ut\n",
|
||
"121 -> y\n",
|
||
"595 -> through\n",
|
||
"841 -> ar\n",
|
||
"116 -> t\n",
|
||
"287 -> a\n",
|
||
"466 -> nd\n",
|
||
"256 -> \n",
|
||
"326 -> li\n",
|
||
"972 -> fe\n",
|
||
"46 -> .\n",
|
||
"257 -> <|endoftext|>\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for token_id in token_ids:\n",
|
||
" print(f\"{token_id} -> {tokenizer.decode([token_id])}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5ea41c6c-5538-4fd5-8b5f-195960853b71",
|
||
"metadata": {},
|
||
"source": [
|
||
"- As we can see, most token IDs represent 2-character subwords; that's because the training data text is very short with not that many repetitive words, and because we used a relatively small vocabulary size"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "600055a3-7ec8-4abf-b88a-c4186fb71463",
|
||
"metadata": {},
|
||
"source": [
|
||
"- As a summary, calling `decode(encode())` should be able to reproduce arbitrary input texts:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"id": "c7056cb1-a9a3-4cf6-8364-29fb493ae240",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'This is some text.'"
|
||
]
|
||
},
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"tokenizer.decode(\n",
|
||
" tokenizer.encode(\"This is some text.\")\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"id": "37bc6753-8f35-4ec7-b23e-df4a12103cb4",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'This is some text with \\n newline characters.'"
|
||
]
|
||
},
|
||
"execution_count": 17,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"tokenizer.decode(\n",
|
||
" tokenizer.encode(\"This is some text with \\n newline characters.\")\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a63b42bb-55bc-4c9d-b859-457a28b76302",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 3.2 Saving and loading the tokenizer"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "86210925-06dc-4e8c-87bd-821569cd7142",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Next, let's look at how we can save the trained tokenizer for reuse later:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"id": "955181cb-0910-4c6a-9c22-d8292a3ec1fc",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Save trained tokenizer\n",
|
||
"tokenizer.save_vocab_and_merges(vocab_path=\"vocab.json\", bpe_merges_path=\"bpe_merges.txt\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"id": "6e5ccfe7-ac67-42f3-b727-87886a8867f1",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Load tokenizer\n",
|
||
"tokenizer2 = BPETokenizerSimple()\n",
|
||
"tokenizer2.load_vocab_and_merges(vocab_path=\"vocab.json\", bpe_merges_path=\"bpe_merges.txt\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e7f9bcc2-3b27-4473-b75e-4f289d52a7cc",
|
||
"metadata": {},
|
||
"source": [
|
||
"- The loaded tokenizer should be able to produce the same results as before:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"id": "00d9bf8f-756f-48bf-81b8-b890e2c2ef13",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Jack embraced beauty through art and life.<|endoftext|>\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(tokenizer2.decode(token_ids))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"id": "e7addb64-2892-4e1c-85dd-4f5152740099",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'This is some text with \\n newline characters.'"
|
||
]
|
||
},
|
||
"execution_count": 21,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"tokenizer2.decode(\n",
|
||
" tokenizer2.encode(\"This is some text with \\n newline characters.\")\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b24d10b2-1ab8-44ee-b51a-14248e30d662",
|
||
"metadata": {},
|
||
"source": [
|
||
" \n",
|
||
"### 3.3 Loading the original GPT-2 BPE tokenizer from OpenAI"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "df07e031-9495-4af1-929f-3f16cbde82a5",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Finally, let's load OpenAI's GPT-2 tokenizer files"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"id": "b45b4366-2c2b-4309-9a14-febf3add8512",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"vocab.bpe already exists in ../02_bonus_bytepair-encoder/gpt2_model/vocab.bpe\n",
|
||
"encoder.json already exists in ../02_bonus_bytepair-encoder/gpt2_model/encoder.json\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Download files if not already present in this directory\n",
|
||
"\n",
|
||
"# Define the directories to search and the files to download\n",
|
||
"search_directories = [\".\", \"../02_bonus_bytepair-encoder/gpt2_model/\"]\n",
|
||
"\n",
|
||
"files_to_download = {\n",
|
||
" \"https://openaipublic.blob.core.windows.net/gpt-2/models/124M/vocab.bpe\": \"vocab.bpe\",\n",
|
||
" \"https://openaipublic.blob.core.windows.net/gpt-2/models/124M/encoder.json\": \"encoder.json\"\n",
|
||
"}\n",
|
||
"\n",
|
||
"# Ensure directories exist and download files if needed\n",
|
||
"paths = {}\n",
|
||
"for url, filename in files_to_download.items():\n",
|
||
" paths[filename] = download_file_if_absent(url, filename, search_directories)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "3fe260a0-1d5f-4bbd-9934-5117052764d1",
|
||
"metadata": {},
|
||
"source": [
|
||
"- Next, we load the files via the `load_vocab_and_merges_from_openai` method:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"id": "74306e6c-47d3-45a3-9e0f-93f7303ef601",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"tokenizer_gpt2 = BPETokenizerSimple()\n",
|
||
"tokenizer_gpt2.load_vocab_and_merges_from_openai(\n",
|
||
" vocab_path=paths[\"encoder.json\"], bpe_merges_path=paths[\"vocab.bpe\"]\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e1d012ce-9e87-47d7-8a1b-b6d6294d76c0",
|
||
"metadata": {},
|
||
"source": [
|
||
"- The vocabulary size should be `50257` as we can confirm via the code below:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"id": "2bb722b4-dbf5-4a0c-9120-efda3293f132",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"50257"
|
||
]
|
||
},
|
||
"execution_count": 24,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"len(tokenizer_gpt2.vocab)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7ea44b45-f524-44b5-a53a-f6d7f483fc19",
|
||
"metadata": {},
|
||
"source": [
|
||
"- We can now use the GPT-2 tokenizer via our `BPETokenizerSimple` object:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"id": "e4866de7-fb32-4dd6-a878-469ec734641c",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[1212, 318, 617, 2420]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"input_text = \"This is some text\"\n",
|
||
"token_ids = tokenizer_gpt2.encode(input_text)\n",
|
||
"print(token_ids)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"id": "3da8d9b2-af55-4b09-95d7-fabd983e919e",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"This is some text\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(tokenizer_gpt2.decode(token_ids))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b3b1e2dc-f69b-4533-87ef-549e6fb9b5a0",
|
||
"metadata": {},
|
||
"source": [
|
||
"- You can double-check that this produces the correct tokens using the interactive [tiktoken app](https://tiktokenizer.vercel.app/?model=gpt2) or the [tiktoken library](https://github.com/openai/tiktoken):\n",
|
||
"\n",
|
||
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/bpe-from-scratch/tiktokenizer.webp\" width=\"600px\">\n",
|
||
"\n",
|
||
"```python\n",
|
||
"import tiktoken\n",
|
||
"\n",
|
||
"gpt2_tokenizer = tiktoken.get_encoding(\"gpt2\")\n",
|
||
"gpt2_tokenizer.encode(\"This is some text\")\n",
|
||
"# prints [1212, 318, 617, 2420]\n",
|
||
"```\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "3558af04-483c-4f6b-88f5-a534f37316cd",
|
||
"metadata": {},
|
||
"source": [
|
||
" \n",
|
||
"# 4. Conclusion"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "410ed0e6-ad06-4bb3-bb39-6b8110c1caa4",
|
||
"metadata": {},
|
||
"source": [
|
||
"- That's it! That's how BPE works in a nutshell, complete with a training method for creating new tokenizers or loading the GPT-2 tokenizer vocabular and merges from the original OpenAI GPT-2 model\n",
|
||
"- I hope you found this brief tutorial useful for educational purposes; if you have any questions, please feel free to open a new Discussion [here](https://github.com/rasbt/LLMs-from-scratch/discussions/categories/q-a)\n",
|
||
"- For a performance comparison with other tokenizer implementations, please see [this notebook](https://github.com/rasbt/LLMs-from-scratch/blob/main/ch02/02_bonus_bytepair-encoder/compare-bpe-tiktoken.ipynb)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.16"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|