mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-06-26 23:50:03 +00:00
243 lines
8.2 KiB
Python
243 lines
8.2 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
import matplotlib.pyplot as plt
|
|
import os
|
|
import torch
|
|
import urllib.request
|
|
import tiktoken
|
|
|
|
|
|
# Import from local files
|
|
from previous_chapters import GPTModel, create_dataloader_v1, generate_text_simple
|
|
|
|
|
|
def text_to_token_ids(text, tokenizer):
|
|
encoded = tokenizer.encode(text)
|
|
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
|
|
return encoded_tensor
|
|
|
|
|
|
def token_ids_to_text(token_ids, tokenizer):
|
|
flat = token_ids.squeeze(0) # remove batch dimension
|
|
return tokenizer.decode(flat.tolist())
|
|
|
|
|
|
def calc_loss_batch(input_batch, target_batch, model, device):
|
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
|
logits = model(input_batch)
|
|
loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
|
|
return loss
|
|
|
|
|
|
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
|
total_loss = 0.
|
|
if len(data_loader) == 0:
|
|
return float("nan")
|
|
elif num_batches is None:
|
|
num_batches = len(data_loader)
|
|
else:
|
|
num_batches = min(num_batches, len(data_loader))
|
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
|
if i < num_batches:
|
|
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
|
total_loss += loss.item()
|
|
else:
|
|
break
|
|
return total_loss / num_batches
|
|
|
|
|
|
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
|
|
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
|
|
model.train()
|
|
return train_loss, val_loss
|
|
|
|
|
|
def generate_and_print_sample(model, tokenizer, device, start_context):
|
|
model.eval()
|
|
context_size = model.pos_emb.weight.shape[0]
|
|
encoded = text_to_token_ids(start_context, tokenizer).to(device)
|
|
with torch.no_grad():
|
|
token_ids = generate_text_simple(
|
|
model=model, idx=encoded,
|
|
max_new_tokens=50, context_size=context_size
|
|
)
|
|
decoded_text = token_ids_to_text(token_ids, tokenizer)
|
|
print(decoded_text.replace("\n", " ")) # Compact print format
|
|
model.train()
|
|
|
|
|
|
def train_model_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
|
|
eval_freq, eval_iter, start_context, tokenizer):
|
|
# Initialize lists to track losses and tokens seen
|
|
train_losses, val_losses, track_tokens_seen = [], [], []
|
|
tokens_seen = 0
|
|
global_step = -1
|
|
|
|
# Main training loop
|
|
for epoch in range(num_epochs):
|
|
model.train() # Set model to training mode
|
|
|
|
for input_batch, target_batch in train_loader:
|
|
optimizer.zero_grad() # Reset loss gradients from previous batch iteration
|
|
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
|
loss.backward() # Calculate loss gradients
|
|
optimizer.step() # Update model weights using loss gradients
|
|
tokens_seen += input_batch.numel()
|
|
global_step += 1
|
|
|
|
# Optional evaluation step
|
|
if global_step % eval_freq == 0:
|
|
train_loss, val_loss = evaluate_model(
|
|
model, train_loader, val_loader, device, eval_iter)
|
|
train_losses.append(train_loss)
|
|
val_losses.append(val_loss)
|
|
track_tokens_seen.append(tokens_seen)
|
|
print(f"Ep {epoch+1} (Step {global_step:06d}): "
|
|
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
|
|
|
|
# Print a sample text after each epoch
|
|
generate_and_print_sample(
|
|
model, tokenizer, device, start_context
|
|
)
|
|
|
|
return train_losses, val_losses, track_tokens_seen
|
|
|
|
|
|
def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
|
|
fig, ax1 = plt.subplots()
|
|
|
|
# Plot training and validation loss against epochs
|
|
ax1.plot(epochs_seen, train_losses, label="Training loss")
|
|
ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
|
|
ax1.set_xlabel("Epochs")
|
|
ax1.set_ylabel("Loss")
|
|
ax1.legend(loc="upper right")
|
|
|
|
# Create a second x-axis for tokens seen
|
|
ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
|
|
ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks
|
|
ax2.set_xlabel("Tokens seen")
|
|
|
|
fig.tight_layout() # Adjust layout to make room
|
|
# plt.show()
|
|
|
|
|
|
def main(gpt_config, settings):
|
|
|
|
torch.manual_seed(123)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
##############################
|
|
# Download data if necessary
|
|
##############################
|
|
|
|
file_path = "the-verdict.txt"
|
|
url = "https://raw.githubusercontent.com/rasbt/LLMs-from-scratch/main/ch02/01_main-chapter-code/the-verdict.txt"
|
|
|
|
if not os.path.exists(file_path):
|
|
with urllib.request.urlopen(url) as response:
|
|
text_data = response.read().decode('utf-8')
|
|
with open(file_path, "w", encoding="utf-8") as file:
|
|
file.write(text_data)
|
|
else:
|
|
with open(file_path, "r", encoding="utf-8") as file:
|
|
text_data = file.read()
|
|
|
|
##############################
|
|
# Initialize model
|
|
##############################
|
|
|
|
model = GPTModel(gpt_config)
|
|
model.to(device) # no assignment model = model.to(device) necessary for nn.Module classes
|
|
optimizer = torch.optim.AdamW(
|
|
model.parameters(), lr=settings["learning_rate"], weight_decay=settings["weight_decay"]
|
|
)
|
|
|
|
##############################
|
|
# Set up dataloaders
|
|
##############################
|
|
|
|
# Train/validation ratio
|
|
train_ratio = 0.90
|
|
split_idx = int(train_ratio * len(text_data))
|
|
|
|
train_loader = create_dataloader_v1(
|
|
text_data[:split_idx],
|
|
batch_size=settings["batch_size"],
|
|
max_length=gpt_config["context_length"],
|
|
stride=gpt_config["context_length"],
|
|
drop_last=True,
|
|
shuffle=True,
|
|
num_workers=0
|
|
)
|
|
|
|
val_loader = create_dataloader_v1(
|
|
text_data[split_idx:],
|
|
batch_size=settings["batch_size"],
|
|
max_length=gpt_config["context_length"],
|
|
stride=gpt_config["context_length"],
|
|
drop_last=False,
|
|
shuffle=False,
|
|
num_workers=0
|
|
)
|
|
|
|
##############################
|
|
# Train model
|
|
##############################
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
train_losses, val_losses, tokens_seen = train_model_simple(
|
|
model, train_loader, val_loader, optimizer, device,
|
|
num_epochs=settings["num_epochs"], eval_freq=5, eval_iter=1,
|
|
start_context="Every effort moves you", tokenizer=tokenizer
|
|
)
|
|
|
|
return train_losses, val_losses, tokens_seen, model
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
GPT_CONFIG_124M = {
|
|
"vocab_size": 50257, # Vocabulary size
|
|
"context_length": 256, # Shortened context length (orig: 1024)
|
|
"emb_dim": 768, # Embedding dimension
|
|
"n_heads": 12, # Number of attention heads
|
|
"n_layers": 12, # Number of layers
|
|
"drop_rate": 0.1, # Dropout rate
|
|
"qkv_bias": False # Query-key-value bias
|
|
}
|
|
|
|
OTHER_SETTINGS = {
|
|
"learning_rate": 5e-4,
|
|
"num_epochs": 10,
|
|
"batch_size": 2,
|
|
"weight_decay": 0.1
|
|
}
|
|
|
|
###########################
|
|
# Initiate training
|
|
###########################
|
|
|
|
train_losses, val_losses, tokens_seen, model = main(GPT_CONFIG_124M, OTHER_SETTINGS)
|
|
|
|
###########################
|
|
# After training
|
|
###########################
|
|
|
|
# Plot results
|
|
epochs_tensor = torch.linspace(0, OTHER_SETTINGS["num_epochs"], len(train_losses))
|
|
plot_losses(epochs_tensor, tokens_seen, train_losses, val_losses)
|
|
plt.savefig("loss.pdf")
|
|
|
|
# Save and load model
|
|
torch.save(model.state_dict(), "model.pth")
|
|
model = GPTModel(GPT_CONFIG_124M)
|
|
model.load_state_dict(torch.load("model.pth", weights_only=True))
|