Sebastian Raschka 7bd263144e
Switch from urllib to requests to improve reliability (#867)
* Switch from urllib to requests to improve reliability

* Keep ruff linter-specific

* update

* update

* update
2025-10-07 15:22:59 -05:00

100 lines
3.2 KiB
Python

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
# File for internal use (unit tests)
import pytest
from gpt_train import main
import requests
@pytest.fixture
def gpt_config():
return {
"vocab_size": 50257,
"context_length": 12, # small for testing efficiency
"emb_dim": 32, # small for testing efficiency
"n_heads": 4, # small for testing efficiency
"n_layers": 2, # small for testing efficiency
"drop_rate": 0.1,
"qkv_bias": False
}
@pytest.fixture
def other_settings():
return {
"learning_rate": 5e-4,
"num_epochs": 1, # small for testing efficiency
"batch_size": 2,
"weight_decay": 0.1
}
def test_main(gpt_config, other_settings):
train_losses, val_losses, tokens_seen, model = main(gpt_config, other_settings)
assert len(train_losses) == 39, "Unexpected number of training losses"
assert len(val_losses) == 39, "Unexpected number of validation losses"
assert len(tokens_seen) == 39, "Unexpected number of tokens seen"
def check_file_size(url, expected_size):
try:
response = requests.head(url, allow_redirects=True, timeout=30)
if response.status_code != 200:
return False, f"{url} not accessible"
size = response.headers.get("Content-Length")
if size is None:
return False, "Content-Length header is missing"
size = int(size)
if size != expected_size:
return False, f"{url} file has expected size {expected_size}, but got {size}"
return True, f"{url} file size is correct"
except requests.exceptions.RequestException as e:
return False, f"Failed to access {url}: {e}"
def test_model_files():
def check_model_files(base_url):
model_size = "124M"
files = {
"checkpoint": 77,
"encoder.json": 1042301,
"hparams.json": 90,
"model.ckpt.data-00000-of-00001": 497759232,
"model.ckpt.index": 5215,
"model.ckpt.meta": 471155,
"vocab.bpe": 456318
}
for file_name, expected_size in files.items():
url = f"{base_url}/{model_size}/{file_name}"
valid, message = check_file_size(url, expected_size)
assert valid, message
model_size = "355M"
files = {
"checkpoint": 77,
"encoder.json": 1042301,
"hparams.json": 91,
"model.ckpt.data-00000-of-00001": 1419292672,
"model.ckpt.index": 10399,
"model.ckpt.meta": 926519,
"vocab.bpe": 456318
}
for file_name, expected_size in files.items():
url = f"{base_url}/{model_size}/{file_name}"
valid, message = check_file_size(url, expected_size)
assert valid, message
check_model_files(base_url="https://openaipublic.blob.core.windows.net/gpt-2/models")
check_model_files(base_url="https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2")