LLMs-from-scratch/ch05/08_memory_efficient_weight_loading/memory-efficient-state-dict.ipynb
Sebastian Raschka c21bfe4a23
Add PyPI package (#576)
* Add PyPI package

* fixes

* fixes
2025-03-23 19:28:49 -05:00

936 lines
26 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "1E_HhLEeYqFG"
},
"source": [
"<table style=\"width:100%\">\n",
"<tr>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<font size=\"2\">\n",
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
"</font>\n",
"</td>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
"</td>\n",
"</tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZuWudYFWYiH7"
},
"source": [
"# Memory-efficient Model Weight Loading"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qt0Qyg6ewUt6"
},
"source": [
"- This notebook provides tips for loading larger pretrained or finetuned models when GPU (or CPU) memory is limited\n",
"- Specifically, it focuses on cases where you saved the model using `torch.save(model.state_dict(), \"model.pth\")` (for example, in chapters 5-7) and want to load it in a new session later for continued pretraining or additional finetuning\n",
"- While the example uses an LLM, the methods explained in this notebook are general and apply to loading any PyTorch model, not just LLMs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/memory-efficient-loading/memory-efficient-loading.webp\" width=\"800px\">"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SxQzFoS-IXdY",
"outputId": "b28ebfbd-9036-4696-d95a-7f96fdf29919"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"memory_profiler version: 0.61.0\n",
"torch version: 2.4.1+cu121\n"
]
}
],
"source": [
"from importlib.metadata import version\n",
"\n",
"pkgs = [\n",
" \"torch\",\n",
"]\n",
"for p in pkgs:\n",
" print(f\"{p} version: {version(p)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "y47iQaQKyHap"
},
"source": [
"&nbsp;\n",
"## 1. Benchmark utilities"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nQeOEoo6yT0X"
},
"source": [
"- First, let's define some utility code to track VRAM (GPU memory)\n",
"- Later, we will also introduce a tool to track the main system RAM (CPU memory)\n",
"- The purpose of these functions will become clear when we apply them later"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "pEiqjYrVivgt"
},
"outputs": [],
"source": [
"import gc\n",
"import time\n",
"import torch\n",
"\n",
"\n",
"def start_memory_tracking():\n",
" \"\"\"Initialize GPU memory tracking.\"\"\"\n",
" if torch.cuda.is_available():\n",
" torch.cuda.reset_peak_memory_stats()\n",
" else:\n",
" print(\"This notebook is intended for CUDA GPUs but CUDA is not available.\")\n",
"\n",
"def print_memory_usage():\n",
" max_gpu_memory = torch.cuda.max_memory_allocated() / (1024 ** 3) # Convert bytes to GB\n",
" print(f\"Maximum GPU memory allocated: {max_gpu_memory:.1f} GB\")\n",
"\n",
"def cleanup():\n",
" gc.collect()\n",
" torch.cuda.empty_cache()\n",
" time.sleep(3) # some buffer time to allow memory to clear\n",
" torch.cuda.reset_peak_memory_stats()\n",
" max_memory_allocated = torch.cuda.max_memory_allocated(device) / (1024 ** 3)\n",
" print(f\"Maximum GPU memory allocated: {max_memory_allocated:.1f} GB\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "z5oJwoc-kkXs"
},
"source": [
"&nbsp;\n",
"## 2. Model setup"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YfJE0vnMyr88"
},
"source": [
"- This code section sets up the model itself\n",
"- Here, we use the \"large\" GPT-2 model to make things more interesting (you may use the \"gpt2-small (124M)\" to lower the memory requirements and execution time of this notebook)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "tMuhCYaVI0w7"
},
"outputs": [],
"source": [
"from previous_chapters import GPTModel\n",
"# If the `previous_chapters.py` file is not available locally,\n",
"# you can import it from the `llms-from-scratch` PyPI package.\n",
"# For details, see: https://github.com/rasbt/LLMs-from-scratch/tree/main/pkg\n",
"# E.g.,\n",
"# from llms_from_scratch.ch04 import GPTModel\n",
"\n",
"\n",
"\n",
"BASE_CONFIG = {\n",
" \"vocab_size\": 50257, # Vocabulary size\n",
" \"context_length\": 1024, # Context length\n",
" \"drop_rate\": 0.0, # Dropout rate\n",
" \"qkv_bias\": True # Query-key-value bias\n",
"}\n",
"\n",
"model_configs = {\n",
" \"gpt2-small (124M)\": {\"emb_dim\": 768, \"n_layers\": 12, \"n_heads\": 12},\n",
" \"gpt2-medium (355M)\": {\"emb_dim\": 1024, \"n_layers\": 24, \"n_heads\": 16},\n",
" \"gpt2-large (774M)\": {\"emb_dim\": 1280, \"n_layers\": 36, \"n_heads\": 20},\n",
" \"gpt2-xl (1558M)\": {\"emb_dim\": 1600, \"n_layers\": 48, \"n_heads\": 25},\n",
"}\n",
"\n",
"CHOOSE_MODEL = \"gpt2-xl (1558M)\"\n",
"\n",
"BASE_CONFIG.update(model_configs[CHOOSE_MODEL])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KWYoo1z5y8aX"
},
"source": [
"- Now, let's see the GPU memory functions in action:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GK3NEA3eJv3f",
"outputId": "60573d6e-c603-45e7-8283-b1e92e2a0013"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 6.4 GB\n"
]
}
],
"source": [
"start_memory_tracking()\n",
"\n",
"\n",
"model = GPTModel(BASE_CONFIG)\n",
"device = torch.device(\"cuda\")\n",
"model.to(device)\n",
"\n",
"print_memory_usage()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GIhwBEBxzBsF"
},
"source": [
"- Additionally, let's make sure that the model runs okay by passing in some example tensor"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "i_j6nZruUd7g"
},
"outputs": [],
"source": [
"# Test if the model works (no need to track memory here)\n",
"test_input = torch.tensor([[1, 2, 3]]).to(device)\n",
"model.eval()\n",
"\n",
"with torch.no_grad():\n",
" model(test_input)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UgNb8c32zh4g"
},
"source": [
"- Next, imagine we were pretraining the model and saving it for later use\n",
"- We skip the actual pretraining here for simplicity and just save the initialized model (but the same concept applies)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "wUIXjcsimXU7"
},
"outputs": [],
"source": [
"# Training code would go here...\n",
"\n",
"model.train()\n",
"torch.save(model.state_dict(), \"model.pth\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "s9tBS4HUzz1g"
},
"source": [
"- Lastly, we delete the model and example tensor in the Python session to reset the GPU memory"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SqmTzztqKnTs",
"outputId": "1198afb9-2d97-4b6a-9bdb-41551f25749d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 0.0 GB\n"
]
}
],
"source": [
"del model, test_input\n",
"cleanup()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7EnO8beUJ6Sb"
},
"source": [
"&nbsp;\n",
"## 3. Weight loading"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JtAXKjsG0AVL"
},
"source": [
"- Now begins the interesting part where we load the pretrained model weights\n",
"- Let's see how much GPU memory is required to load the previously saved model"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "wCrQNbSJJO9w",
"outputId": "9b203868-a8ef-4011-fc2b-611cc0d10994"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 12.8 GB\n"
]
}
],
"source": [
"# Then load pretrained weights\n",
"\n",
"start_memory_tracking()\n",
"\n",
"model = GPTModel(BASE_CONFIG)\n",
"model.to(device)\n",
"\n",
"model.load_state_dict(\n",
" torch.load(\"model.pth\", map_location=device, weights_only=True)\n",
")\n",
"model.to(device)\n",
"model.eval();\n",
"\n",
"print_memory_usage()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4AGvOrcN0KdJ"
},
"source": [
"- Notice that the memory is 2x as large as in the previous session\n",
"- This is because we have the same model in memory twice, for a short period of time:\n",
" - The first time via `model.to(device)`\n",
" - The second time via the code line `model.load_state_dict(torch.load(\"model.pth\", map_location=device, weights_only=True))`; eventually, the loaded model weights will be copied into the model, and the `state_dict` will be discarded, but for a brief amount of time, we have both the main model and the loaded `state_dict` in memory\n",
"- The remaining sections focus on addressing this\n",
"- But first, let's test the model and reset the GPU memory\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "DvlUn-nmmbuj",
"outputId": "11d3ab68-f570-4c1e-c631-fe5547026799"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 0.0 GB\n"
]
}
],
"source": [
"# Test if the model works (no need to track memory here)\n",
"test_input = torch.tensor([[1, 2, 3]]).to(device)\n",
"model.eval()\n",
"\n",
"with torch.no_grad():\n",
" model(test_input)\n",
"\n",
"del model, test_input\n",
"cleanup()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RdPnW3iLLrjX"
},
"source": [
"&nbsp;\n",
"## 4. Loading weights sequentially"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FYqtUON602TD"
},
"source": [
"- One workaround for the problem of having the model weights in GPU memory twice, as highlighted in the previous section, is to load the model sequentially\n",
"- Below, we:\n",
" - first load the model into GPU memory\n",
" - then load the model weights into CPU memory\n",
" - and finally copy each parameter one by one into GPU memory\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "DOIGTNWTmx9G",
"outputId": "145162e6-aaa6-4c2a-ed8f-f1cf068adb80"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 6.4 GB\n",
"Maximum GPU memory allocated: 6.7 GB\n"
]
}
],
"source": [
"start_memory_tracking()\n",
"\n",
"model = GPTModel(BASE_CONFIG).to(device)\n",
"\n",
"state_dict = torch.load(\"model.pth\", map_location=\"cpu\", weights_only=True)\n",
"\n",
"print_memory_usage()\n",
"\n",
"# Sequentially copy weights to the model's parameters\n",
"with torch.no_grad():\n",
" for name, param in model.named_parameters():\n",
" if name in state_dict:\n",
" param.copy_(state_dict[name].to(device))\n",
" else:\n",
" print(f\"Warning: {name} not found in state_dict.\")\n",
"\n",
"print_memory_usage()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Pn9xD_xL1ZzM"
},
"source": [
"- As we can see above, the memory usage is much lower than before\n",
"- Notice that the memory increases from 6.4 to 6.7 GB because initially, we only have the model in memory, and then we have the model plus 1 parameter tensor in memory (we temporarily move the parameter tensor to the GPU so we can assign it using `\".to\"` the model)\n",
"- Overall, this is a significant improvement\n",
"- Again, let's briefly test the model and then reset the GPU memory for the next section"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "PRHnjA48nJgw",
"outputId": "dcd6b1b2-538f-4862-96a6-a5fcbf3326a4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 0.0 GB\n"
]
}
],
"source": [
"# Test if the model works (no need to track memory here)\n",
"test_input = torch.tensor([[1, 2, 3]]).to(device)\n",
"model.eval()\n",
"\n",
"with torch.no_grad():\n",
" model(test_input)\n",
"\n",
"del model, test_input, state_dict, param\n",
"cleanup()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5M92LK7usb-Z"
},
"source": [
"&nbsp;\n",
"## 5. Loading the model with low CPU memory"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "R45qgeB613e2"
},
"source": [
"- In the previous session, we reduced GPU memory use by loading the weights (`state_dict`) into CPU memory first before copying them one-by-one into the model\n",
"- However, what do we do if we have limited CPU memory?\n",
"- This section uses PyTorch's so-called `\"meta\"` device approach to load a model on machines with large GPU memory but small CPU memory\n",
"- But first, let's define a convenience function to monitor CPU memory"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"id": "BrcWy0q-3Bbe"
},
"outputs": [],
"source": [
"import os\n",
"import psutil\n",
"from threading import Thread\n",
"\n",
"\n",
"def memory_usage_in_gb(func, *args, **kwargs):\n",
" process = psutil.Process(os.getpid())\n",
"\n",
" # Measure the baseline memory usage before running the function\n",
" baseline_mem = process.memory_info().rss / 1024 ** 3 # in GB\n",
"\n",
" # Start monitoring memory in a separate thread\n",
" mem_usage = []\n",
" done = False\n",
"\n",
" def monitor_memory():\n",
" while not done:\n",
" mem_usage.append(process.memory_info().rss / 1024 ** 3) # Convert to GB\n",
" time.sleep(0.1)\n",
"\n",
" t = Thread(target=monitor_memory)\n",
" t.start()\n",
"\n",
" # Run the function\n",
" func(*args, **kwargs)\n",
"\n",
" # Stop monitoring\n",
" done = True\n",
" t.join()\n",
"\n",
" peak_mem_usage_gb = max(mem_usage) - baseline_mem\n",
" return peak_mem_usage_gb\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ayy30Ytd5hjF"
},
"source": [
"- To start with, let's track the CPU memory of the sequential weight loading approach from the previous section"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "rCkV6IbQtpVn",
"outputId": "26c0435a-1e3d-4e8f-fbe2-f9655bad61b4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 6.4 GB\n",
"Maximum GPU memory allocated: 6.7 GB\n",
"-> Maximum CPU memory allocated: 6.3 GB\n"
]
}
],
"source": [
"def load_sequentially():\n",
" start_memory_tracking()\n",
"\n",
" model = GPTModel(BASE_CONFIG).to(device)\n",
"\n",
" state_dict = torch.load(\"model.pth\", map_location=\"cpu\", weights_only=True)\n",
"\n",
" print_memory_usage()\n",
"\n",
" # Sequentially copy weights to the model's parameters\n",
" with torch.no_grad():\n",
" for name, param in model.named_parameters():\n",
" if name in state_dict:\n",
" param.copy_(state_dict[name].to(device))\n",
" else:\n",
" print(f\"Warning: {name} not found in state_dict.\")\n",
"\n",
" print_memory_usage()\n",
"\n",
"\n",
"peak_memory_used = memory_usage_in_gb(load_sequentially)\n",
"print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UWrmnCML5oKy"
},
"source": [
"- Now, suppose we have a machine with low CPU memory but large GPU memory\n",
"- We can trade off CPU memory and GPU memory usage by introducing PyTorch's so-called \"meta\" device\n",
"- PyTorch's meta device is a special device type that allows you to create tensors without allocating actual memory for their data, effectively creating \"meta\" tensors\n",
"- This is useful for tasks like model analysis or architecture definition, where you need tensor shapes and types without the overhead of memory allocation"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "PBErC_5Yt8ly",
"outputId": "8799db06-191c-47c4-92fa-fbb95d685aa9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 12.8 GB\n",
"Maximum GPU memory allocated: 12.8 GB\n",
"-> Maximum CPU memory allocated: 1.3 GB\n"
]
}
],
"source": [
"def load_sequentially_with_meta():\n",
" start_memory_tracking()\n",
"\n",
" with torch.device(\"meta\"):\n",
" model = GPTModel(BASE_CONFIG)\n",
"\n",
" model = model.to_empty(device=device)\n",
"\n",
" state_dict = torch.load(\"model.pth\", map_location=device, weights_only=True)\n",
"\n",
" print_memory_usage()\n",
"\n",
" # Sequentially copy weights to the model's parameters\n",
" with torch.no_grad():\n",
" for name, param in model.named_parameters():\n",
" if name in state_dict:\n",
" param.copy_(state_dict[name])\n",
" else:\n",
" print(f\"Warning: {name} not found in state_dict.\")\n",
"\n",
" print_memory_usage()\n",
"\n",
"peak_memory_used = memory_usage_in_gb(load_sequentially_with_meta)\n",
"print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VpnCABp75-VQ"
},
"source": [
"- As we can see above, by creating the model on the meta-device and loading the weights directly into GPU memory, we effectively reduced the CPU memory requirements\n",
"- One might ask: \"Is the sequential weight loading still necessary then, and how does that compare to the original approach?\"\n",
"- Let's check the simple PyTorch weight loading approach for comparison (from the first weight loading section in this notebook):"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4f-bqBNRuR39",
"outputId": "f7c0a901-b404-433a-9b93-2bbfa8183c56"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 12.8 GB\n",
"-> Maximum CPU memory allocated: 4.4 GB\n"
]
}
],
"source": [
"def baseline():\n",
" start_memory_tracking()\n",
"\n",
" model = GPTModel(BASE_CONFIG)\n",
" model.to(device)\n",
"\n",
" model.load_state_dict(torch.load(\"model.pth\", map_location=device, weights_only=True))\n",
" model.to(device)\n",
" model.eval();\n",
"\n",
" print_memory_usage()\n",
"\n",
"peak_memory_used = memory_usage_in_gb(baseline)\n",
"print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NKAjxbX86xnb"
},
"source": [
"- As we can see above, the \"simple\" weight loading without the meta device uses more memory\n",
"- In other words, if you have a machine with limited CPU memory, you can use the meta device approach to directly load the model weights into GPU memory to reduce peak CPU memory usage"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"&nbsp;\n",
"## 6. Using `mmap=True` (recommmended)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- As an intermediate or advanced `torch.load` user, you may wonder how these approaches compare to the `mmap=True` setting in PyTorch\n",
"- The `mmap=True` setting in PyTorch enables memory-mapped file I/O, which allows the tensor to access data directly from disk storage, thus reducing memory usage by not loading the entire file into RAM if RAM is limited\n",
"- Also, see the helpful comment by [mikaylagawarecki](https://github.com/rasbt/LLMs-from-scratch/issues/402)\n",
"- At first glance, it may look less efficient than the sequential approaches above:"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GKwV0AMNemuR",
"outputId": "e207f2bf-5c87-498e-80fe-e8c4016ac711"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 6.4 GB\n",
"-> Maximum CPU memory allocated: 5.9 GB\n"
]
}
],
"source": [
"def best_practices():\n",
" with torch.device(\"meta\"):\n",
" model = GPTModel(BASE_CONFIG)\n",
"\n",
" model.load_state_dict(\n",
" torch.load(\"model.pth\", map_location=device, weights_only=True, mmap=True),\n",
" assign=True\n",
" )\n",
"\n",
" print_memory_usage()\n",
"\n",
"peak_memory_used = memory_usage_in_gb(best_practices)\n",
"print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- The reason why the CPU RAM usage is so high is that there's enough CPU RAM available on this machine\n",
"- However, if you were to run this on a machine with limited CPU RAM, the `mmap` approach would use less memory"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"&nbsp;\n",
"## 7. Other methods"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- This notebook is focused on simple, built-in methods for loading weights in PyTorch\n",
"- The recommended approach for limited CPU memory cases is the `mmap=True` approach explained enough\n",
"- Alternatively, one other option is a brute-force approach that saves and loads each weight tensor separately:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "2CgPEZUIb00w"
},
"outputs": [],
"source": [
"model = GPTModel(BASE_CONFIG)\n",
"# Assume `model` is your trained model\n",
"state_dict = model.state_dict()\n",
"\n",
"# Create a directory to store individual parameter files\n",
"os.makedirs(\"model_parameters\", exist_ok=True)\n",
"\n",
"# Save each parameter tensor separately\n",
"for name, param in state_dict.items():\n",
" torch.save(param.cpu(), f\"model_parameters/{name}.pt\")\n",
"\n",
"del model"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gTsmtJK-b4yy",
"outputId": "d361e2d3-e34c-48d7-9047-846c9bfd291e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum GPU memory allocated: 6.4 GB\n",
"Maximum GPU memory allocated: 6.4 GB\n",
"-> Maximum CPU memory allocated: 0.3 GB\n"
]
}
],
"source": [
"def load_individual_weights():\n",
"\n",
" start_memory_tracking()\n",
"\n",
" with torch.device(\"meta\"):\n",
" model = GPTModel(BASE_CONFIG)\n",
"\n",
" model = model.to_empty(device=device)\n",
"\n",
" print_memory_usage()\n",
" param_dir = \"model_parameters\"\n",
"\n",
" with torch.no_grad():\n",
" for name, param in model.named_parameters():\n",
" weight_path = os.path.join(param_dir, f\"{name}.pt\")\n",
" if os.path.exists(weight_path):\n",
" param_data = torch.load(weight_path, map_location=\"cpu\", weights_only=True)\n",
" param.copy_(param_data)\n",
" del param_data # Free memory\n",
" else:\n",
" print(f\"Warning: {name} not found in {param_dir}.\")\n",
"\n",
" print_memory_usage()\n",
"\n",
"\n",
"peak_memory_used = memory_usage_in_gb(load_individual_weights)\n",
"print(f\"-> Maximum CPU memory allocated: {peak_memory_used:.1f} GB\")"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "L4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 4
}