mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-06-26 23:50:03 +00:00
431 lines
15 KiB
Python
431 lines
15 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
# This is a summary file containing the main takeaways from chapter 6.
|
|
|
|
import urllib.request
|
|
import zipfile
|
|
import os
|
|
from pathlib import Path
|
|
import time
|
|
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import tiktoken
|
|
import torch
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
from gpt_download import download_and_load_gpt2
|
|
from previous_chapters import GPTModel, load_weights_into_gpt
|
|
|
|
|
|
def download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path):
|
|
if data_file_path.exists():
|
|
print(f"{data_file_path} already exists. Skipping download and extraction.")
|
|
return
|
|
|
|
# Downloading the file
|
|
with urllib.request.urlopen(url) as response:
|
|
with open(zip_path, "wb") as out_file:
|
|
out_file.write(response.read())
|
|
|
|
# Unzipping the file
|
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
zip_ref.extractall(extracted_path)
|
|
|
|
# Add .tsv file extension
|
|
original_file_path = Path(extracted_path) / "SMSSpamCollection"
|
|
os.rename(original_file_path, data_file_path)
|
|
print(f"File downloaded and saved as {data_file_path}")
|
|
|
|
|
|
def create_balanced_dataset(df):
|
|
# Count the instances of "spam"
|
|
num_spam = df[df["Label"] == "spam"].shape[0]
|
|
|
|
# Randomly sample "ham" instances to match the number of "spam" instances
|
|
ham_subset = df[df["Label"] == "ham"].sample(num_spam, random_state=123)
|
|
|
|
# Combine ham "subset" with "spam"
|
|
balanced_df = pd.concat([ham_subset, df[df["Label"] == "spam"]])
|
|
|
|
return balanced_df
|
|
|
|
|
|
def random_split(df, train_frac, validation_frac):
|
|
# Shuffle the entire DataFrame
|
|
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
|
|
|
|
# Calculate split indices
|
|
train_end = int(len(df) * train_frac)
|
|
validation_end = train_end + int(len(df) * validation_frac)
|
|
|
|
# Split the DataFrame
|
|
train_df = df[:train_end]
|
|
validation_df = df[train_end:validation_end]
|
|
test_df = df[validation_end:]
|
|
|
|
return train_df, validation_df, test_df
|
|
|
|
|
|
class SpamDataset(Dataset):
|
|
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
|
|
self.data = pd.read_csv(csv_file)
|
|
|
|
# Pre-tokenize texts
|
|
self.encoded_texts = [
|
|
tokenizer.encode(text) for text in self.data["Text"]
|
|
]
|
|
|
|
if max_length is None:
|
|
self.max_length = self._longest_encoded_length()
|
|
else:
|
|
self.max_length = max_length
|
|
# Truncate sequences if they are longer than max_length
|
|
self.encoded_texts = [
|
|
encoded_text[:self.max_length]
|
|
for encoded_text in self.encoded_texts
|
|
]
|
|
|
|
# Pad sequences to the longest sequence
|
|
self.encoded_texts = [
|
|
encoded_text + [pad_token_id] * (self.max_length - len(encoded_text))
|
|
for encoded_text in self.encoded_texts
|
|
]
|
|
|
|
def __getitem__(self, index):
|
|
encoded = self.encoded_texts[index]
|
|
label = self.data.iloc[index]["Label"]
|
|
return (
|
|
torch.tensor(encoded, dtype=torch.long),
|
|
torch.tensor(label, dtype=torch.long)
|
|
)
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|
|
|
|
def _longest_encoded_length(self):
|
|
max_length = 0
|
|
for encoded_text in self.encoded_texts:
|
|
encoded_length = len(encoded_text)
|
|
if encoded_length > max_length:
|
|
max_length = encoded_length
|
|
return max_length
|
|
# Note: A more pythonic version to implement this method
|
|
# is the following, which is also used in the next chapter:
|
|
# return max(len(encoded_text) for encoded_text in self.encoded_texts)
|
|
|
|
|
|
def calc_accuracy_loader(data_loader, model, device, num_batches=None):
|
|
model.eval()
|
|
correct_predictions, num_examples = 0, 0
|
|
|
|
if num_batches is None:
|
|
num_batches = len(data_loader)
|
|
else:
|
|
num_batches = min(num_batches, len(data_loader))
|
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
|
if i < num_batches:
|
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
|
|
|
with torch.no_grad():
|
|
logits = model(input_batch)[:, -1, :] # Logits of last output token
|
|
predicted_labels = torch.argmax(logits, dim=-1)
|
|
|
|
num_examples += predicted_labels.shape[0]
|
|
correct_predictions += (predicted_labels == target_batch).sum().item()
|
|
else:
|
|
break
|
|
return correct_predictions / num_examples
|
|
|
|
|
|
def calc_loss_batch(input_batch, target_batch, model, device):
|
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
|
logits = model(input_batch)[:, -1, :] # Logits of last output token
|
|
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
|
return loss
|
|
|
|
|
|
def calc_loss_loader(data_loader, model, device, num_batches=None):
|
|
total_loss = 0.
|
|
if len(data_loader) == 0:
|
|
return float("nan")
|
|
elif num_batches is None:
|
|
num_batches = len(data_loader)
|
|
else:
|
|
num_batches = min(num_batches, len(data_loader))
|
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
|
if i < num_batches:
|
|
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
|
total_loss += loss.item()
|
|
else:
|
|
break
|
|
return total_loss / num_batches
|
|
|
|
|
|
def evaluate_model(model, train_loader, val_loader, device, eval_iter):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
|
|
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
|
|
model.train()
|
|
return train_loss, val_loss
|
|
|
|
|
|
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
|
|
eval_freq, eval_iter, tokenizer):
|
|
# Initialize lists to track losses and tokens seen
|
|
train_losses, val_losses, train_accs, val_accs = [], [], [], []
|
|
examples_seen, global_step = 0, -1
|
|
|
|
# Main training loop
|
|
for epoch in range(num_epochs):
|
|
model.train() # Set model to training mode
|
|
|
|
for input_batch, target_batch in train_loader:
|
|
optimizer.zero_grad() # Reset loss gradients from previous batch iteration
|
|
loss = calc_loss_batch(input_batch, target_batch, model, device)
|
|
loss.backward() # Calculate loss gradients
|
|
optimizer.step() # Update model weights using loss gradients
|
|
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
|
|
global_step += 1
|
|
|
|
# Optional evaluation step
|
|
if global_step % eval_freq == 0:
|
|
train_loss, val_loss = evaluate_model(
|
|
model, train_loader, val_loader, device, eval_iter)
|
|
train_losses.append(train_loss)
|
|
val_losses.append(val_loss)
|
|
print(f"Ep {epoch+1} (Step {global_step:06d}): "
|
|
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
|
|
|
|
# Calculate accuracy after each epoch
|
|
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
|
|
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
|
|
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
|
|
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
|
train_accs.append(train_accuracy)
|
|
val_accs.append(val_accuracy)
|
|
|
|
return train_losses, val_losses, train_accs, val_accs, examples_seen
|
|
|
|
|
|
def plot_values(epochs_seen, examples_seen, train_values, val_values, label="loss"):
|
|
fig, ax1 = plt.subplots(figsize=(5, 3))
|
|
|
|
# Plot training and validation loss against epochs
|
|
ax1.plot(epochs_seen, train_values, label=f"Training {label}")
|
|
ax1.plot(epochs_seen, val_values, linestyle="-.", label=f"Validation {label}")
|
|
ax1.set_xlabel("Epochs")
|
|
ax1.set_ylabel(label.capitalize())
|
|
ax1.legend()
|
|
|
|
# Create a second x-axis for tokens seen
|
|
ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
|
|
ax2.plot(examples_seen, train_values, alpha=0) # Invisible plot for aligning ticks
|
|
ax2.set_xlabel("Examples seen")
|
|
|
|
fig.tight_layout() # Adjust layout to make room
|
|
plt.savefig(f"{label}-plot.pdf")
|
|
# plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="Finetune a GPT model for classification"
|
|
)
|
|
parser.add_argument(
|
|
"--test_mode",
|
|
default=False,
|
|
action="store_true",
|
|
help=("This flag runs the model in test mode for internal testing purposes. "
|
|
"Otherwise, it runs the model as it is used in the chapter (recommended).")
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
########################################
|
|
# Download and prepare dataset
|
|
########################################
|
|
|
|
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
|
|
zip_path = "sms_spam_collection.zip"
|
|
extracted_path = "sms_spam_collection"
|
|
data_file_path = Path(extracted_path) / "SMSSpamCollection.tsv"
|
|
|
|
try:
|
|
download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path)
|
|
except (urllib.error.HTTPError, urllib.error.URLError, TimeoutError) as e:
|
|
print(f"Primary URL failed: {e}. Trying backup URL...")
|
|
url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/sms%2Bspam%2Bcollection.zip"
|
|
download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path)
|
|
|
|
df = pd.read_csv(data_file_path, sep="\t", header=None, names=["Label", "Text"])
|
|
balanced_df = create_balanced_dataset(df)
|
|
balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
|
|
|
|
train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
|
|
train_df.to_csv("train.csv", index=None)
|
|
validation_df.to_csv("validation.csv", index=None)
|
|
test_df.to_csv("test.csv", index=None)
|
|
|
|
########################################
|
|
# Create data loaders
|
|
########################################
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
train_dataset = SpamDataset(
|
|
csv_file="train.csv",
|
|
max_length=None,
|
|
tokenizer=tokenizer
|
|
)
|
|
|
|
val_dataset = SpamDataset(
|
|
csv_file="validation.csv",
|
|
max_length=train_dataset.max_length,
|
|
tokenizer=tokenizer
|
|
)
|
|
|
|
test_dataset = SpamDataset(
|
|
csv_file="test.csv",
|
|
max_length=train_dataset.max_length,
|
|
tokenizer=tokenizer
|
|
)
|
|
|
|
num_workers = 0
|
|
batch_size = 8
|
|
|
|
torch.manual_seed(123)
|
|
|
|
train_loader = DataLoader(
|
|
dataset=train_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=num_workers,
|
|
drop_last=True,
|
|
)
|
|
|
|
val_loader = DataLoader(
|
|
dataset=val_dataset,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
drop_last=False,
|
|
)
|
|
|
|
test_loader = DataLoader(
|
|
dataset=test_dataset,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
drop_last=False,
|
|
)
|
|
|
|
########################################
|
|
# Load pretrained model
|
|
########################################
|
|
|
|
# Small GPT model for testing purposes
|
|
if args.test_mode:
|
|
BASE_CONFIG = {
|
|
"vocab_size": 50257,
|
|
"context_length": 120,
|
|
"drop_rate": 0.0,
|
|
"qkv_bias": False,
|
|
"emb_dim": 12,
|
|
"n_layers": 1,
|
|
"n_heads": 2
|
|
}
|
|
model = GPTModel(BASE_CONFIG)
|
|
model.eval()
|
|
device = "cpu"
|
|
|
|
# Code as it is used in the main chapter
|
|
else:
|
|
CHOOSE_MODEL = "gpt2-small (124M)"
|
|
INPUT_PROMPT = "Every effort moves"
|
|
|
|
BASE_CONFIG = {
|
|
"vocab_size": 50257, # Vocabulary size
|
|
"context_length": 1024, # Context length
|
|
"drop_rate": 0.0, # Dropout rate
|
|
"qkv_bias": True # Query-key-value bias
|
|
}
|
|
|
|
model_configs = {
|
|
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
|
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
|
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
|
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
|
}
|
|
|
|
BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
|
|
|
|
assert train_dataset.max_length <= BASE_CONFIG["context_length"], (
|
|
f"Dataset length {train_dataset.max_length} exceeds model's context "
|
|
f"length {BASE_CONFIG['context_length']}. Reinitialize data sets with "
|
|
f"`max_length={BASE_CONFIG['context_length']}`"
|
|
)
|
|
|
|
model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
|
|
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
|
|
|
model = GPTModel(BASE_CONFIG)
|
|
load_weights_into_gpt(model, params)
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
########################################
|
|
# Modify and pretrained model
|
|
########################################
|
|
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
|
|
torch.manual_seed(123)
|
|
|
|
num_classes = 2
|
|
model.out_head = torch.nn.Linear(in_features=BASE_CONFIG["emb_dim"], out_features=num_classes)
|
|
model.to(device)
|
|
|
|
for param in model.trf_blocks[-1].parameters():
|
|
param.requires_grad = True
|
|
|
|
for param in model.final_norm.parameters():
|
|
param.requires_grad = True
|
|
|
|
########################################
|
|
# Finetune modified model
|
|
########################################
|
|
|
|
start_time = time.time()
|
|
torch.manual_seed(123)
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
|
|
|
|
num_epochs = 5
|
|
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
|
|
model, train_loader, val_loader, optimizer, device,
|
|
num_epochs=num_epochs, eval_freq=50, eval_iter=5,
|
|
tokenizer=tokenizer
|
|
)
|
|
|
|
end_time = time.time()
|
|
execution_time_minutes = (end_time - start_time) / 60
|
|
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
|
|
|
|
########################################
|
|
# Plot results
|
|
########################################
|
|
|
|
# loss plot
|
|
epochs_tensor = torch.linspace(0, num_epochs, len(train_losses))
|
|
examples_seen_tensor = torch.linspace(0, examples_seen, len(train_losses))
|
|
plot_values(epochs_tensor, examples_seen_tensor, train_losses, val_losses)
|
|
|
|
# accuracy plot
|
|
epochs_tensor = torch.linspace(0, num_epochs, len(train_accs))
|
|
examples_seen_tensor = torch.linspace(0, examples_seen, len(train_accs))
|
|
plot_values(epochs_tensor, examples_seen_tensor, train_accs, val_accs, label="accuracy")
|