LLMs-from-scratch/ch05/07_gpt_to_llama/converting-llama2-to-llama3.ipynb
2024-10-05 09:20:54 -05:00

6773 lines
211 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "0_xya1nyDHfY",
"metadata": {
"id": "0_xya1nyDHfY"
},
"source": [
"<table style=\"width:100%\">\n",
"<tr>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<font size=\"2\">\n",
"Supplementary code for the <a href=\"http://mng.bz/orYv\">Build a Large Language Model From Scratch</a> book by <a href=\"https://sebastianraschka.com\">Sebastian Raschka</a><br>\n",
"<br>Code repository: <a href=\"https://github.com/rasbt/LLMs-from-scratch\">https://github.com/rasbt/LLMs-from-scratch</a>\n",
"</font>\n",
"</td>\n",
"<td style=\"vertical-align:middle; text-align:left;\">\n",
"<a href=\"http://mng.bz/orYv\"><img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/cover-small.webp\" width=\"100px\"></a>\n",
"</td>\n",
"</tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"id": "l62zIRRSBy_R",
"metadata": {
"id": "l62zIRRSBy_R"
},
"source": [
"# Converting Llama 2 to Llama 3.2 From Scratch"
]
},
{
"cell_type": "markdown",
"id": "aFmxTQbwCUMl",
"metadata": {
"id": "aFmxTQbwCUMl"
},
"source": [
"- This is a follow-up notebook to [Converting a From-Scratch GPT Architecture to Llama 2](./converting-gpt-to-llama2.ipynb), converting Meta AI's Llama 2 architecture model step by step to Llama 3, Llama 3.1, and Llama 3.2\n",
"- The explanations are purposefully kept minimal in this notebook so as not to bloat it unnecessarily and focus on the main code\n",
"- For more information about the architectures, please see the Llama 2 and Llama 3 papers\n",
" - [Llama 2: Open Foundation and Fine-Tuned Chat Models (2023)](https://arxiv.org/abs/2307.09288)\n",
" - [The Llama 3 Herd of Models](https://arxiv.org/abs/2407.21783)"
]
},
{
"cell_type": "markdown",
"id": "ohhMKUWvGm9z",
"metadata": {
"id": "ohhMKUWvGm9z"
},
"source": [
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/gpt2-to-llama2-llama3.webp?1\">"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "ws0wsUzwLH2k",
"metadata": {
"id": "ws0wsUzwLH2k"
},
"outputs": [],
"source": [
"# pip install -r requirements-extra.txt"
]
},
{
"cell_type": "markdown",
"id": "JBpQwU89ETA1",
"metadata": {
"id": "JBpQwU89ETA1"
},
"source": [
"- Packages that are being used in this notebook:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "34a9a440-84c2-42cc-808b-38677cb6af8a",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "34a9a440-84c2-42cc-808b-38677cb6af8a",
"outputId": "e3d3d4b6-ee63-4e28-d794-e8b0bdd931fd"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"blobfile version: 3.0.0\n",
"huggingface_hub version: 0.24.7\n",
"tiktoken version: 0.8.0\n",
"torch version: 2.4.1+cu121\n"
]
}
],
"source": [
"from importlib.metadata import version\n",
"\n",
"pkgs = [\n",
" \"blobfile\", # to download pretrained weights\n",
" \"huggingface_hub\", # to download pretrained weights\n",
" \"tiktoken\", # to implement the tokenizer\n",
" \"torch\", # to implement the model\n",
"]\n",
"for p in pkgs:\n",
" print(f\"{p} version: {version(p)}\")"
]
},
{
"cell_type": "markdown",
"id": "UJJneXpTEg4W",
"metadata": {
"id": "UJJneXpTEg4W"
},
"source": [
"&nbsp;\n",
"# 1. Convert the Llama model implementation step by step"
]
},
{
"cell_type": "markdown",
"id": "v1zpfX2GHBKa",
"metadata": {
"id": "v1zpfX2GHBKa"
},
"source": [
"- If you are new to implementing LLM architectures, I recommend starting with [chapter 4](../../ch04/01_main-chapter-code/ch04.ipynb), which walks you through the implementation of the original GPT architecture step by step\n",
"- The [Converting a From-Scratch GPT Architecture to Llama 2](./converting-gpt-to-llama2.ipynb) then implements the Llama-specific components, such as RMSNorm layers, SiLU and SwiGLU activations, RoPE (rotary position embeddings), and the SentencePiece tokenizer\n",
"- This notebook takes the Llama 2 architecture and transforms it into Llama 3 architecture by\n",
" 1. modifying the rotary embeddings\n",
" 2. implementing grouped-query attention\n",
" 3. and using a customized version of the GPT-4 tokenizer\n",
"- Later, we then load the original Llama 3 weights shared by Meta AI into the architecture"
]
},
{
"cell_type": "markdown",
"id": "c14b9121-abe1-4a46-99b8-acdef71e5b41",
"metadata": {
"id": "c14b9121-abe1-4a46-99b8-acdef71e5b41"
},
"source": [
"&nbsp;\n",
"## 1.1 Reusing Llama 2 components"
]
},
{
"cell_type": "markdown",
"id": "dgDhJGJ6xR4e",
"metadata": {
"id": "dgDhJGJ6xR4e"
},
"source": [
"- Llama 2 is actually quite similar to Llama 3, as mentioned above and illustrated in the figure at the top of this notebook\n",
"- This means that we can import several building blocks from the [Llama 2 notebook](./converting-gpt-to-llama2.ipynb) using the following code"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a5bc3948-231b-4f1f-8d41-24ad0b7643d0",
"metadata": {
"id": "a5bc3948-231b-4f1f-8d41-24ad0b7643d0"
},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import io\n",
"import nbformat\n",
"import types\n",
"\n",
"def import_from_notebook():\n",
" def import_definitions_from_notebook(fullname, names):\n",
" current_dir = os.getcwd()\n",
" path = os.path.join(current_dir, fullname + \".ipynb\")\n",
" path = os.path.normpath(path)\n",
"\n",
" # Load the notebook\n",
" if not os.path.exists(path):\n",
" raise FileNotFoundError(f\"Notebook file not found at: {path}\")\n",
"\n",
" with io.open(path, \"r\", encoding=\"utf-8\") as f:\n",
" nb = nbformat.read(f, as_version=4)\n",
"\n",
" # Create a module to store the imported functions and classes\n",
" mod = types.ModuleType(fullname)\n",
" sys.modules[fullname] = mod\n",
"\n",
" # Go through the notebook cells and only execute function or class definitions\n",
" for cell in nb.cells:\n",
" if cell.cell_type == \"code\":\n",
" cell_code = cell.source\n",
" for name in names:\n",
" # Check for function or class definitions\n",
" if f\"def {name}\" in cell_code or f\"class {name}\" in cell_code:\n",
" exec(cell_code, mod.__dict__)\n",
" return mod\n",
"\n",
" fullname = \"converting-gpt-to-llama2\"\n",
" names = [\"precompute_rope_params\", \"compute_rope\", \"SiLU\", \"FeedForward\", \"RMSNorm\", \"MultiHeadAttention\"]\n",
"\n",
" return import_definitions_from_notebook(fullname, names)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d546032d-fce4-47cf-8d0e-682b78b21c61",
"metadata": {
"id": "d546032d-fce4-47cf-8d0e-682b78b21c61"
},
"outputs": [],
"source": [
"imported_module = import_from_notebook()\n",
"\n",
"# We need to redefine precompute_rope_params\n",
"# precompute_rope_params = getattr(imported_module, \"precompute_rope_params\", None)\n",
"compute_rope = getattr(imported_module, \"compute_rope\", None)\n",
"SiLU = getattr(imported_module, \"SiLU\", None)\n",
"FeedForward = getattr(imported_module, \"FeedForward\", None)\n",
"RMSNorm = getattr(imported_module, \"RMSNorm\", None)\n",
"\n",
"# MultiHeadAttention only for comparison purposes\n",
"MultiHeadAttention = getattr(imported_module, \"MultiHeadAttention\", None)"
]
},
{
"cell_type": "markdown",
"id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f",
"metadata": {
"id": "979c7b6d-1370-4da1-8bfb-a2b27537bf2f"
},
"source": [
"&nbsp;\n",
"## 1.2 Modified RoPE"
]
},
{
"cell_type": "markdown",
"id": "m9_oDcHCx8VI",
"metadata": {
"id": "m9_oDcHCx8VI"
},
"source": [
"- Llama 3 uses rotary position embeddings (RoPE) similar to Llama 2 (for a detailed explanation, please see the [RoPE paper](https://arxiv.org/abs/2104.09864))\n",
"- There are some subtle differences in the RoPE settings, though\n",
" - Llama 3 now supports up to 8,192 tokens, twice as many as Llama 2 (4,096)\n",
" - The base value for the so-called RoPE $\\theta$ (see equation below) was increased from 10,000 (Llama 2) to 50,000 (Llama 3) in the following equation (adapted from the [RoPE paper](https://arxiv.org/abs/2104.09864))\n",
"\n",
"$$\\Theta = \\left\\{\\theta_i = \\text{base}^{\\frac{2(i-1)}{d}}, i \\in \\left[1, 2, ..., d/2\\right]\\right\\}$$\n",
"\n",
"- These $\\theta$ values are a set of predefined parameters that are used to determine the rotational angles in the rotary matrix, where $d$ is the dimensionality of the embedding space\n",
"- Increasing the base from 10,000 to 50,000 makes the frequencies (or rotation angles) decay more slowly across the dimensions, which means that higher dimensions will be associated with larger angles than before (essentially, it's a decompression of the frequencies)\n",
"- In addition, we introduce a `freq_config` section in the code below that adjusts the frequency; however, we won't be needing it in Llama 3 (only Llama 3.1 and Llama 3.2), so we will revisit this `freq_config` later (it's set to `None` and ignored by default)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6Upl109OOAcu",
"metadata": {
"id": "6Upl109OOAcu"
},
"outputs": [],
"source": [
"import torch\n",
"\n",
"def precompute_rope_params(head_dim, theta_base=10000, context_length=4096, freq_config=None):\n",
" assert head_dim % 2 == 0, \"Embedding dimension must be even\"\n",
"\n",
" # Compute the inverse frequencies\n",
" inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim // 2) / (head_dim // 2)))\n",
"\n",
" ################################ NEW ###############################################\n",
" # Frequency adjustments\n",
" if freq_config is not None:\n",
" low_freq_wavelen = freq_config[\"original_context_length\"] / freq_config[\"low_freq_factor\"]\n",
" high_freq_wavelen = freq_config[\"original_context_length\"] / freq_config[\"high_freq_factor\"]\n",
"\n",
" wavelen = 2 * torch.pi / inv_freq\n",
"\n",
" inv_freq_llama = torch.where(\n",
" wavelen > low_freq_wavelen, inv_freq / freq_config[\"factor\"], inv_freq\n",
" )\n",
"\n",
" smooth_factor = (freq_config[\"original_context_length\"] / wavelen - freq_config[\"low_freq_factor\"]) / (\n",
" freq_config[\"high_freq_factor\"] - freq_config[\"low_freq_factor\"]\n",
" )\n",
"\n",
" smoothed_inv_freq = (\n",
" (1 - smooth_factor) * (inv_freq / freq_config[\"factor\"]) + smooth_factor * inv_freq\n",
" )\n",
"\n",
" is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)\n",
" inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)\n",
" inv_freq = inv_freq_llama\n",
" ####################################################################################\n",
"\n",
"\n",
" # Generate position indices\n",
" positions = torch.arange(context_length)\n",
"\n",
" # Compute the angles\n",
" angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)\n",
"\n",
" # Expand angles to match the head_dim\n",
" angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)\n",
"\n",
" # Precompute sine and cosine\n",
" cos = torch.cos(angles)\n",
" sin = torch.sin(angles)\n",
"\n",
" return cos, sin"
]
},
{
"cell_type": "markdown",
"id": "jJBvO0YMJBXR",
"metadata": {
"id": "jJBvO0YMJBXR"
},
"source": [
"- To summarize, what's new so far for Llama 3 compared to Llama 2 are the context length and theta base parameter:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "56c37216-e022-4603-be16-f9d3eaeaf4a1",
"metadata": {
"id": "56c37216-e022-4603-be16-f9d3eaeaf4a1"
},
"outputs": [],
"source": [
"# Instantiate RoPE parameters\n",
"\n",
"llama_2_context_len = 4096\n",
"llama_3_context_len = 8192\n",
"\n",
"llama_2_theta_base = 10_000\n",
"llama_3_theta_base = 50_000"
]
},
{
"cell_type": "markdown",
"id": "_V8v6i7MJItU",
"metadata": {
"id": "_V8v6i7MJItU"
},
"source": [
"- The usage remains the same as before in Llama 2:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "dae70c8a-eb18-40f9-a2e5-a6af2a57628b",
"metadata": {
"id": "dae70c8a-eb18-40f9-a2e5-a6af2a57628b"
},
"outputs": [],
"source": [
"# Settings\n",
"batch_size = 2\n",
"num_heads = 4\n",
"head_dim = 16\n",
"\n",
"# Instantiate RoPE parameters\n",
"cos, sin = precompute_rope_params(\n",
" head_dim=head_dim,\n",
" theta_base=llama_3_theta_base,\n",
" context_length=llama_3_context_len\n",
")\n",
"\n",
"# Dummy query and key tensors\n",
"torch.manual_seed(123)\n",
"queries = torch.randn(batch_size, llama_3_context_len, num_heads, head_dim)\n",
"keys = torch.randn(batch_size, llama_3_context_len, num_heads, head_dim)\n",
"\n",
"# Apply rotary position embeddings\n",
"queries_rot = compute_rope(queries, cos, sin)\n",
"keys_rot = compute_rope(keys, cos, sin)"
]
},
{
"cell_type": "markdown",
"id": "cd19b75c-cf25-47b8-a010-6733fc0e9a8a",
"metadata": {
"id": "cd19b75c-cf25-47b8-a010-6733fc0e9a8a"
},
"source": [
"&nbsp;\n",
"## 1.3 Grouped-query attention"
]
},
{
"cell_type": "markdown",
"id": "111c7d3f-fded-49e8-a617-9fe67b81dddc",
"metadata": {
"id": "111c7d3f-fded-49e8-a617-9fe67b81dddc"
},
"source": [
"- In this section, we replace multi-head attention (MHA) with an alternative mechanism called grouped-query attention (GQA)\n",
"- In short, one can think of GQA as a more compute- and parameter-efficient version of MHA\n",
"- In GQA, we reduce the number of key and value projections by sharing them among multiple attention heads\n",
"- Each attention head still has its unique query, but these queries attend to the same group of keys and values\n",
"- Below is an illustration of GQA with 2 key-value-groups (kv-groups):\n",
"\n",
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/grouped-query-attention.webp\" width=\"500px\">\n"
]
},
{
"cell_type": "markdown",
"id": "perAYa2R_KW2",
"metadata": {
"id": "perAYa2R_KW2"
},
"source": [
"- The main idea behind GQA is to reduce the number of unique query groups that attend to the key-value pairs, reducing the size of some of the matrix multiplications and the number of parameters in MHA without significantly reducing modeling performance\n",
"- The GQA code is very similar to MHA (I highlighted the changes below via the \"NEW\" sections)\n",
"- In short, the main change in GQA is that each query group needs to be repeated to match the number of heads it is associated with, as implemented below"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9b12e674-ef08-4dd7-8843-615b65b39c91",
"metadata": {
"id": "9b12e674-ef08-4dd7-8843-615b65b39c91"
},
"outputs": [],
"source": [
"import torch.nn as nn\n",
"\n",
"class GroupedQueryAttention(nn.Module):\n",
" def __init__(\n",
" self, d_in, d_out, context_length, num_heads,\n",
" num_kv_groups, # NEW\n",
" rope_base=10_000, # NEW\n",
" rope_config=None, # NEW\n",
" dtype=None\n",
" ):\n",
" super().__init__()\n",
" assert d_out % num_heads == 0, \"d_out must be divisible by num_heads\"\n",
" assert num_heads % num_kv_groups == 0, \"num_heads must be divisible by num_kv_groups\"\n",
"\n",
" self.d_out = d_out\n",
" self.num_heads = num_heads\n",
" self.head_dim = d_out // num_heads\n",
"\n",
" ############################# NEW #############################\n",
" # self.W_key = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
" # self.W_value = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
" self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)\n",
" self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)\n",
" self.num_kv_groups = num_kv_groups\n",
" self.group_size = num_heads // num_kv_groups\n",
" ################################################################\n",
"\n",
" self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)\n",
" self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)\n",
"\n",
" self.register_buffer(\"mask\", torch.triu(torch.ones(context_length, context_length), diagonal=1))\n",
" cos, sin = precompute_rope_params(\n",
" head_dim=self.head_dim,\n",
" theta_base=rope_base, # NEW\n",
" freq_config=rope_config, # NEW\n",
" context_length=8192\n",
" )\n",
" self.register_buffer(\"cos\", cos)\n",
" self.register_buffer(\"sin\", sin)\n",
"\n",
" def forward(self, x):\n",
" b, num_tokens, d_in = x.shape\n",
"\n",
" queries = self.W_query(x) # Shape: (b, num_tokens, d_out)\n",
" keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)\n",
" values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)\n",
"\n",
" # Reshape queries, keys, and values\n",
" queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)\n",
"\n",
" ##################### NEW #####################\n",
" # keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)\n",
" # values = values.view(b, num_tokens, self.num_heads, self.head_dim)\n",
" keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)\n",
" values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)\n",
" ################################################\n",
"\n",
" # Transpose keys, values, and queries\n",
" keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)\n",
" values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)\n",
" queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim)\n",
"\n",
" # Apply RoPE\n",
" keys = compute_rope(keys, self.cos, self.sin)\n",
" queries = compute_rope(queries, self.cos, self.sin)\n",
"\n",
" ##################### NEW #####################\n",
" # Expand keys and values to match the number of heads\n",
" # Shape: (b, num_heads, num_tokens, head_dim)\n",
"\n",
" keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)\n",
" values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)\n",
" # For example, before repeat_interleave along dim=1 (query groups):\n",
" # [K1, K2]\n",
" # After repeat_interleave (each query group is repeated group_size times):\n",
" # [K1, K1, K2, K2]\n",
" # If we used regular repeat instead of repeat_interleave, we'd get:\n",
" # [K1, K2, K1, K2]\n",
" ################################################\n",
"\n",
" # Compute scaled dot-product attention (aka self-attention) with a causal mask\n",
" # Shape: (b, num_heads, num_tokens, num_tokens)\n",
" attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head\n",
"\n",
" # Original mask truncated to the number of tokens and converted to boolean\n",
" mask_bool = self.mask.bool()[:num_tokens, :num_tokens]\n",
"\n",
" # Use the mask to fill attention scores\n",
" attn_scores.masked_fill_(mask_bool, -torch.inf)\n",
"\n",
" attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)\n",
" assert keys.shape[-1] == self.head_dim\n",
"\n",
" # Shape: (b, num_tokens, num_heads, head_dim)\n",
" context_vec = (attn_weights @ values).transpose(1, 2)\n",
"\n",
" # Combine heads, where self.d_out = self.num_heads * self.head_dim\n",
" context_vec = context_vec.reshape(b, num_tokens, self.d_out)\n",
" context_vec = self.out_proj(context_vec) # optional projection\n",
"\n",
" return context_vec"
]
},
{
"cell_type": "markdown",
"id": "roAXSwJs9hR8",
"metadata": {
"id": "roAXSwJs9hR8"
},
"source": [
"- To illustrate the parameter savings, consider the following multi-head attention example from the GPT and Llama 2 code:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b4b8f085-349e-4674-a3f0-78fde0664fac",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "b4b8f085-349e-4674-a3f0-78fde0664fac",
"outputId": "9da09d72-43b1-45af-d46f-6928ea4af33a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"W_key: torch.Size([4096, 4096])\n",
"W_value: torch.Size([4096, 4096])\n",
"W_query: torch.Size([4096, 4096])\n"
]
}
],
"source": [
"# Settings\n",
"batch_size = 1\n",
"context_len = 3000\n",
"max_context_len = 8192\n",
"embed_dim = 4096\n",
"num_heads = 32\n",
"\n",
"\n",
"example_batch = torch.randn((batch_size, context_len, embed_dim))\n",
"\n",
"mha = MultiHeadAttention(\n",
" d_in=embed_dim,\n",
" d_out=embed_dim,\n",
" context_length=max_context_len,\n",
" num_heads=num_heads\n",
")\n",
"\n",
"mha(example_batch)\n",
"\n",
"print(\"W_key:\", mha.W_key.weight.shape)\n",
"print(\"W_value:\", mha.W_value.weight.shape)\n",
"print(\"W_query:\", mha.W_query.weight.shape)"
]
},
{
"cell_type": "markdown",
"id": "IMQtFkcQ9sXC",
"metadata": {
"id": "IMQtFkcQ9sXC"
},
"source": [
"- Now, if we use grouped-query attention instead, with 8 kv-groups (that's how many Llama 3 8B uses), we can see that the number of rows of the key and value matrices are reduced by a factor of 4 (because 32 attention heads divided by 8 kv-groups is 4)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "15e65d3c-7b42-4ed3-bfee-bb09578657bb",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "15e65d3c-7b42-4ed3-bfee-bb09578657bb",
"outputId": "69709a78-2aaa-4597-8142-2f44eb59753f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"W_key: torch.Size([1024, 4096])\n",
"W_value: torch.Size([1024, 4096])\n",
"W_query: torch.Size([4096, 4096])\n"
]
}
],
"source": [
"gqa = GroupedQueryAttention(\n",
" d_in=embed_dim,\n",
" d_out=embed_dim,\n",
" context_length=max_context_len,\n",
" num_heads=num_heads,\n",
" num_kv_groups=8,\n",
" rope_base=llama_3_theta_base\n",
")\n",
"\n",
"gqa(example_batch)\n",
"\n",
"print(\"W_key:\", gqa.W_key.weight.shape)\n",
"print(\"W_value:\", gqa.W_value.weight.shape)\n",
"print(\"W_query:\", gqa.W_query.weight.shape)"
]
},
{
"cell_type": "markdown",
"id": "1a5d4c88-c66a-483b-b4e2-419ff9fd60d5",
"metadata": {
"id": "1a5d4c88-c66a-483b-b4e2-419ff9fd60d5"
},
"source": [
"- As a side note, to make the GroupedQueryAttention equivalent to standard multi-head attention, you can set the number of query groups (`num_kv_groups`) equal to the number of heads (`num_heads`)\n",
"- Lastly, let's compare the number of parameters below:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "58f713aa-ac00-4e2f-8247-94609aa01350",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "58f713aa-ac00-4e2f-8247-94609aa01350",
"outputId": "486dfd9c-9f3a-4b9e-f9a2-35fb43b9a5fb"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of parameters:\n",
"MHA: 67,108,864\n",
"GQA: 41,943,040\n"
]
}
],
"source": [
"print(\"Total number of parameters:\")\n",
"\n",
"mha_total_params = sum(p.numel() for p in mha.parameters())\n",
"print(f\"MHA: {mha_total_params:,}\")\n",
"\n",
"gqa_total_params = sum(p.numel() for p in gqa.parameters())\n",
"print(f\"GQA: {gqa_total_params:,}\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "78b60dfd-6c0f-41f7-8f0c-8e57116f07f5",
"metadata": {
"id": "78b60dfd-6c0f-41f7-8f0c-8e57116f07f5"
},
"outputs": [],
"source": [
"# Free up memory:\n",
"del mha\n",
"del gqa"
]
},
{
"cell_type": "markdown",
"id": "8fcd8802-2859-45a2-905a-f4fe96629dd9",
"metadata": {
"id": "8fcd8802-2859-45a2-905a-f4fe96629dd9"
},
"source": [
"&nbsp;\n",
"## 1.4 Update the TransformerBlock module"
]
},
{
"cell_type": "markdown",
"id": "KABNccft_YnR",
"metadata": {
"id": "KABNccft_YnR"
},
"source": [
"- Next, we update the `TransformerBlock`\n",
"- Here, we simply swap `MultiHeadAttention` with `GroupedQueryAttention` and add the new RoPE settings"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "f9fa8eb4-7196-4dee-aec6-0dcbc70921c4",
"metadata": {
"id": "f9fa8eb4-7196-4dee-aec6-0dcbc70921c4"
},
"outputs": [],
"source": [
"class TransformerBlock(nn.Module):\n",
" def __init__(self, cfg):\n",
" super().__init__()\n",
" self.att = GroupedQueryAttention( # MultiHeadAttention(\n",
" d_in=cfg[\"emb_dim\"],\n",
" d_out=cfg[\"emb_dim\"],\n",
" context_length=cfg[\"context_length\"],\n",
" num_heads=cfg[\"n_heads\"],\n",
" num_kv_groups=cfg[\"n_kv_groups\"], # NEW\n",
" rope_base=cfg[\"rope_base\"], # NEW\n",
" rope_config=cfg[\"rope_freq\"], # NEW\n",
" dtype=cfg[\"dtype\"]\n",
" )\n",
" self.ff = FeedForward(cfg)\n",
" self.norm1 = RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
" self.norm2 = RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
"\n",
" def forward(self, x):\n",
" # Shortcut connection for attention block\n",
" shortcut = x\n",
" x = self.norm1(x)\n",
" x = self.att(x.to(torch.bfloat16)) # Shape [batch_size, num_tokens, emb_size]\n",
" x = x + shortcut # Add the original input back\n",
"\n",
" # Shortcut connection for feed-forward block\n",
" shortcut = x\n",
" x = self.norm2(x)\n",
" x = self.ff(x.to(torch.bfloat16))\n",
" x = x + shortcut # Add the original input back\n",
"\n",
" return x"
]
},
{
"cell_type": "markdown",
"id": "fd921ab5-c48c-4c52-bf41-b847b3b822b9",
"metadata": {
"id": "fd921ab5-c48c-4c52-bf41-b847b3b822b9"
},
"source": [
"&nbsp;\n",
"## 1.5 Defining the model class"
]
},
{
"cell_type": "markdown",
"id": "M_tLAq_r_llN",
"metadata": {
"id": "M_tLAq_r_llN"
},
"source": [
"- When setting up the model class, we fortunately don't have to do much; we just update the name to `Llama3Model`"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "475755d6-01f7-4e6e-ad9a-cec6f031ebf6",
"metadata": {
"id": "475755d6-01f7-4e6e-ad9a-cec6f031ebf6"
},
"outputs": [],
"source": [
"# class Llama2Model(nn.Module):\n",
"class Llama3Model(nn.Module):\n",
" def __init__(self, cfg):\n",
" super().__init__()\n",
" self.tok_emb = nn.Embedding(cfg[\"vocab_size\"], cfg[\"emb_dim\"], dtype=cfg[\"dtype\"])\n",
"\n",
" self.trf_blocks = nn.Sequential(\n",
" *[TransformerBlock(cfg) for _ in range(cfg[\"n_layers\"])])\n",
"\n",
" self.final_norm = RMSNorm(cfg[\"emb_dim\"], eps=1e-5)\n",
" self.out_head = nn.Linear(cfg[\"emb_dim\"], cfg[\"vocab_size\"], bias=False, dtype=cfg[\"dtype\"])\n",
"\n",
" def forward(self, in_idx):\n",
" batch_size, seq_len = in_idx.shape\n",
" tok_embeds = self.tok_emb(in_idx)\n",
" x = tok_embeds\n",
" x = self.trf_blocks(x)\n",
" x = self.final_norm(x)\n",
" logits = self.out_head(x.to(torch.bfloat16))\n",
" return logits"
]
},
{
"cell_type": "markdown",
"id": "4bc94940-aaeb-45b9-9399-3a69b8043e60",
"metadata": {
"id": "4bc94940-aaeb-45b9-9399-3a69b8043e60"
},
"source": [
"&nbsp;\n",
"## 2. Initialize model"
]
},
{
"cell_type": "markdown",
"id": "HoGGRAGykQTE",
"metadata": {
"id": "HoGGRAGykQTE"
},
"source": [
"- Now we can define a Llama 3 config file (the Llama 2 config file is shown for comparison)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "e0564727-2d35-4f0c-b0fc-cde1e9134a18",
"metadata": {
"id": "e0564727-2d35-4f0c-b0fc-cde1e9134a18"
},
"outputs": [],
"source": [
"LLAMA2_CONFIG_7B = {\n",
" \"vocab_size\": 32_000, # Vocabulary size\n",
" \"context_length\": 4096, # Context length\n",
" \"emb_dim\": 4096, # Embedding dimension\n",
" \"n_heads\": 32, # Number of attention heads\n",
" \"n_layers\": 32, # Number of layers\n",
" \"hidden_dim\": 11_008, # Size of the intermediate dimension in FeedForward\n",
" \"dtype\": torch.bfloat16 # Lower-precision dtype to save memory\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "2ad90f82-15c7-4806-b509-e45b56f57db5",
"metadata": {
"id": "2ad90f82-15c7-4806-b509-e45b56f57db5"
},
"outputs": [],
"source": [
"LLAMA3_CONFIG_8B = {\n",
" \"vocab_size\": 128_256, # NEW: Larger vocabulary size\n",
" \"context_length\": 8192, # NEW: Larger context length\n",
" \"emb_dim\": 4096, # Embedding dimension\n",
" \"n_heads\": 32, # Number of attention heads\n",
" \"n_layers\": 32, # Number of layers\n",
" \"hidden_dim\": 14_336, # NEW: Larger size of the intermediate dimension in FeedForward\n",
" \"n_kv_groups\": 8, # NEW: Key-Value groups for grouped-query attention\n",
" \"rope_base\": 50_000, # NEW: The base in RoPE's \"theta\" was increased to 50_000\n",
" \"rope_freq\": None, # NEW: Additional configuration for adjusting the RoPE frequencies\n",
" \"dtype\": torch.bfloat16 # Lower-precision dtype to save memory\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "FAP7fiBzkaBz",
"metadata": {
"id": "FAP7fiBzkaBz"
},
"source": [
"- Using these settings, we can now initialize a Llama 3 8B model\n",
"- Note that this requires ~34 GB of memory (for comparison, Llama 2 7B required ~26 GB of memory)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "7004d785-ac9a-4df5-8760-6807fc604686",
"metadata": {
"id": "7004d785-ac9a-4df5-8760-6807fc604686"
},
"outputs": [],
"source": [
"model = Llama3Model(LLAMA3_CONFIG_8B)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "6079f747-8f20-4c6b-8d38-7156f1101729",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6079f747-8f20-4c6b-8d38-7156f1101729",
"outputId": "0a8cd23b-d9fa-4c2d-ca63-3fc79bc4de0d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of parameters: 8,030,261,248\n"
]
}
],
"source": [
"total_params = sum(p.numel() for p in model.parameters())\n",
"print(f\"Total number of parameters: {total_params:,}\")"
]
},
{
"cell_type": "markdown",
"id": "Bx14NtzWk2wj",
"metadata": {
"id": "Bx14NtzWk2wj"
},
"source": [
"- As shown above, the model contains 8 billion parameters\n",
"- Additionally, we can calculate the memory requirements for this model using the code below:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "0df1c79e-27a7-4b0f-ba4e-167fe107125a",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0df1c79e-27a7-4b0f-ba4e-167fe107125a",
"outputId": "3425e9ce-d8c0-4b37-bded-a2c60b66a41a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"float32 (PyTorch default): 68.08 GB\n",
"bfloat16: 34.04 GB\n"
]
}
],
"source": [
"def model_memory_size(model, input_dtype=torch.float32):\n",
" total_params = 0\n",
" total_grads = 0\n",
" for param in model.parameters():\n",
" # Calculate total number of elements per parameter\n",
" param_size = param.numel()\n",
" total_params += param_size\n",
" # Check if gradients are stored for this parameter\n",
" if param.requires_grad:\n",
" total_grads += param_size\n",
"\n",
" # Calculate buffer size (non-parameters that require memory)\n",
" total_buffers = sum(buf.numel() for buf in model.buffers())\n",
"\n",
" # Size in bytes = (Number of elements) * (Size of each element in bytes)\n",
" # We assume parameters and gradients are stored in the same type as input dtype\n",
" element_size = torch.tensor(0, dtype=input_dtype).element_size()\n",
" total_memory_bytes = (total_params + total_grads + total_buffers) * element_size\n",
"\n",
" # Convert bytes to gigabytes\n",
" total_memory_gb = total_memory_bytes / (1024**3)\n",
"\n",
" return total_memory_gb\n",
"\n",
"print(f\"float32 (PyTorch default): {model_memory_size(model, input_dtype=torch.float32):.2f} GB\")\n",
"print(f\"bfloat16: {model_memory_size(model, input_dtype=torch.bfloat16):.2f} GB\")"
]
},
{
"cell_type": "markdown",
"id": "zudd-5PulKFL",
"metadata": {
"id": "zudd-5PulKFL"
},
"source": [
"- Lastly, we can also transfer the model to an NVIDIA or Apple Silicon GPU if applicable:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "a4c50e19-1402-45b6-8ccd-9077b2ba836d",
"metadata": {
"id": "a4c50e19-1402-45b6-8ccd-9077b2ba836d"
},
"outputs": [],
"source": [
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\")\n",
"elif torch.backends.mps.is_available():\n",
" device = torch.device(\"mps\")\n",
"else:\n",
" device = torch.device(\"cpu\")\n",
"\n",
"model.to(device);"
]
},
{
"cell_type": "markdown",
"id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34",
"metadata": {
"id": "5dc64a06-27dc-46ec-9e6d-1700a8227d34"
},
"source": [
"&nbsp;\n",
"## 3. Load tokenizer"
]
},
{
"cell_type": "markdown",
"id": "0eb30f0c-6144-4bed-87d9-6b2bac377005",
"metadata": {
"id": "0eb30f0c-6144-4bed-87d9-6b2bac377005"
},
"source": [
"- In this section, we are going to load the tokenizer for the model\n",
"- Llama 2 used Google's [SentencePiece](https://github.com/google/sentencepiece) tokenizer instead of OpenAI's BPE tokenizer based on the [Tiktoken](https://github.com/openai/tiktoken) library\n",
"- Llama 3, however, reverted back to using the BPE tokenizer from Tiktoken; specifically, it uses the GPT-4 tokenizer with an extended vocabulary\n",
"- You can find the original Tiktoken-adaptation by Meta AI [here](https://github.com/meta-llama/llama3/blob/main/llama/tokenizer.py) in their official Llama 3 repository\n",
"- Below, I rewrote the tokenizer code to make it more readable and minimal for this notebook (but the behavior should be similar)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "5f390cbf-8f92-46dc-afe3-d90b5affae10",
"metadata": {
"id": "5f390cbf-8f92-46dc-afe3-d90b5affae10"
},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"\n",
"import tiktoken\n",
"from tiktoken.load import load_tiktoken_bpe\n",
"\n",
"\n",
"class Tokenizer:\n",
" def __init__(self, model_path):\n",
" assert os.path.isfile(model_path), f\"Model file {model_path} not found\"\n",
" mergeable_ranks = load_tiktoken_bpe(model_path)\n",
" num_base_tokens = len(mergeable_ranks)\n",
"\n",
" self.special_tokens = {\n",
" \"<|begin_of_text|>\": 128000,\n",
" \"<|end_of_text|>\": 128001,\n",
" \"<|start_header_id|>\": 128006,\n",
" \"<|end_header_id|>\": 128007,\n",
" \"<|eot_id|>\": 128009,\n",
" }\n",
" self.special_tokens.update({\n",
" f\"<|reserved_{i}|>\": 128002 + i for i in range(256) if (128002 + i) not in self.special_tokens.values()\n",
" })\n",
"\n",
" self.model = tiktoken.Encoding(\n",
" name=Path(model_path).name,\n",
" pat_str=r\"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+\",\n",
" mergeable_ranks=mergeable_ranks,\n",
" special_tokens=self.special_tokens\n",
" )\n",
"\n",
"\n",
" def encode(self, text, bos=False, eos=False, allowed_special=set(), disallowed_special=()):\n",
" if bos:\n",
" tokens = [self.special_tokens[\"<|begin_of_text|>\"]]\n",
" else:\n",
" tokens = []\n",
"\n",
" tokens += self.model.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)\n",
"\n",
" if eos:\n",
" tokens.append(self.special_tokens[\"<|end_of_text|>\"])\n",
" return tokens\n",
"\n",
" def decode(self, tokens):\n",
" return self.model.decode(tokens)"
]
},
{
"cell_type": "markdown",
"id": "0a1509f8-8778-4fec-ba32-14d95c646167",
"metadata": {
"id": "0a1509f8-8778-4fec-ba32-14d95c646167"
},
"source": [
"- Meta AI shared the original Llama 3 model weights and tokenizer vocabulary on the Hugging Face Hub\n",
"- We will first download the tokenizer vocabulary from the Hub and load it into the code above"
]
},
{
"cell_type": "markdown",
"id": "KbnlzsbYmJU6",
"metadata": {
"id": "KbnlzsbYmJU6"
},
"source": [
"- Please note that Meta AI requires that you accept the Llama 3 licensing terms before you can download the files; to do this, you have to create a Hugging Face Hub account and visit the [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) repository to accept the terms\n",
"- Next, you will need to create an access token; to generate an access token with READ permissions, click on the profile picture in the upper right and click on \"Settings\"\n",
"\n",
"\n",
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/settings.webp?1\" width=\"300px\">\n",
"\n",
"- Then, create and copy the access token so you can copy & paste it into the next code cell\n",
"\n",
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/access-token.webp?1\" width=\"600px\">"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "3357a230-b678-4691-a238-257ee4e80185",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3357a230-b678-4691-a238-257ee4e80185",
"outputId": "a3652def-ea7f-46fb-f293-2a59affb71a0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
"Token is valid (permission: read).\n",
"Your token has been saved to /root/.cache/huggingface/token\n",
"Login successful\n"
]
}
],
"source": [
"from huggingface_hub import login\n",
"import json\n",
"\n",
"with open(\"config.json\", \"r\") as config_file:\n",
" config = json.load(config_file)\n",
" access_token = config[\"HF_ACCESS_TOKEN\"]\n",
"\n",
"login(token=access_token)"
]
},
{
"cell_type": "markdown",
"id": "IxGh6ZYQo0VN",
"metadata": {
"id": "IxGh6ZYQo0VN"
},
"source": [
"- After login via the access token, which is necessary to verify that we accepted the Llama 3 licensing terms, we can now download the tokenizer vocabulary:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "69714ea8-b9b8-4687-8392-f3abb8f93a32",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "69714ea8-b9b8-4687-8392-f3abb8f93a32",
"outputId": "c9836ba8-5176-4dd5-b618-6cc36fdbe1f0"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n",
"The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
"To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
"You will be able to reuse this secret in all of your notebooks.\n",
"Please note that authentication is recommended but still optional to access public models or datasets.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from huggingface_hub import hf_hub_download\n",
"\n",
"tokenizer_file_path = hf_hub_download(\n",
" repo_id=\"meta-llama/Meta-Llama-3-8B\",\n",
" filename=\"original/tokenizer.model\",\n",
" local_dir=\"llama3-files\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "F8BH1Nk0AYCS",
"metadata": {
"id": "F8BH1Nk0AYCS"
},
"source": [
"- Note that for using Llama 3 files, we may need the `blobfile` package, which is used when handling datasets or models stored in cloud storage solutions like Google Cloud Storage (GCS), Azure Blob Storage, or Amazon S3\n",
"- You can install this dependency by uncommenting and executing the `pip` command below\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "5dm6Oz7uAytV",
"metadata": {
"id": "5dm6Oz7uAytV"
},
"outputs": [],
"source": [
"# pip install blobfile"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "8b8c0ce6-a6fb-4b8a-8de2-ee7bb7646fd0",
"metadata": {
"id": "8b8c0ce6-a6fb-4b8a-8de2-ee7bb7646fd0"
},
"outputs": [],
"source": [
"tokenizer = Tokenizer(tokenizer_file_path)"
]
},
{
"cell_type": "markdown",
"id": "NVhmFeX3pT_M",
"metadata": {
"id": "NVhmFeX3pT_M"
},
"source": [
"- We can now use the `generate` function to have the Llama 3 model generate new text:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "e0a2b5cd-6cba-4d72-b8ff-04d8315d483e",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "e0a2b5cd-6cba-4d72-b8ff-04d8315d483e",
"outputId": "990d7b74-cb35-476b-d8bd-d544006e00f4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output text:\n",
" Every effort_dead aeros Ingredients başında.extension clangmissions.esp 사진 Ek Pars til DoctorsDaoеньostivan normal Ekized <20> Ekized <20> Ek rdr tık%,orgen>',\n",
"\n"
]
}
],
"source": [
"from previous_chapters import generate, text_to_token_ids, token_ids_to_text\n",
"\n",
"\n",
"torch.manual_seed(123)\n",
"\n",
"token_ids = generate(\n",
" model=model,\n",
" idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
" max_new_tokens=30,\n",
" context_size=LLAMA3_CONFIG_8B[\"context_length\"],\n",
" top_k=1,\n",
" temperature=0.\n",
")\n",
"\n",
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
]
},
{
"cell_type": "markdown",
"id": "93WTtAA5paYV",
"metadata": {
"id": "93WTtAA5paYV"
},
"source": [
"- Of course, as we can see above, the text is nonsensical since we haven't trained the Llama 3 model yet\n",
"- In the next section, instead of training it ourselves, which would cost tens to hundreds of thousands of dollars, we load the pretrained weights from Meta AI"
]
},
{
"cell_type": "markdown",
"id": "f63cc248-1d27-4eb6-aa50-173b436652f8",
"metadata": {
"id": "f63cc248-1d27-4eb6-aa50-173b436652f8"
},
"source": [
"&nbsp;\n",
"## 4. Load pretrained weights"
]
},
{
"cell_type": "markdown",
"id": "aKeN7rUfqZMI",
"metadata": {
"id": "aKeN7rUfqZMI"
},
"source": [
"- We are loading the [\"meta-llama/Meta-Llama-3-8B\"](https://huggingface.co/meta-llama/Meta-Llama-3-8B) base model below, which is a simple text completion model before finetuning\n",
"- Alternatively, you can load the instruction-finetuned and aligned [\"meta-llama/Meta-Llama-3-8B-Instruct\"](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) model by modifying the string in the next code cell accordingly\n",
"- Combined, the weight files are about 16 GB large"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "5fa9c06c-7a53-4b4d-9ce4-acc027322ee4",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 145,
"referenced_widgets": [
"f3788acce34f4956b0727b58d0cf38c6",
"6022a9426683420690d9b41a0ca4f870",
"e9aba3d53b4d45c485a7aad649c7b465",
"f1a12d7929db4309b9881853135359fc",
"58c9dec75a3346b1b787f88dd510d254",
"9492edc02dee456f840325d913fa4e4f",
"66dc94b23556499f985f8accbb1f89cb",
"7c6658cfff1a4d27af3de148184f77d9",
"7266a729edfb4a44b5b1c67dc79be146",
"76dbab4873f342019c5d7624ae2c9775",
"3cea4b431147441a8d9bd872811d5974",
"8ae98969541849efa356cf912ac39b1e",
"f9373112649945e3b446c3e1ec274dc1",
"d49791082a304ade95c185c79fae1f41",
"616e383bb3d442bcb6edb2721a8180b6",
"87f474861e54432e9d533e0a89bb77da",
"e805bb6dfee34dab8870f4618d8bffdb",
"be3e9bf271f04eb0b119659e1af3a0ea",
"00148825ce0248b7a23eb28e3eca6749",
"f1a9b0c2431640298a6c1b258298b12d",
"8ba9f009e92a46fcbcbb401dc444f12e",
"d74186bb74d142dfb683fa347b6990f7",
"9bb60a5a3710463ebe3a17f8d2a446be",
"0a08fb81165748748ccb080e6df0600f",
"603690f543114a7fb6aebd433c80bdc3",
"773b802daed942f5a11f3eab3b83be08",
"7989003a613e45f780d3f800e121543a",
"9d49589118f5432cac49650251046429",
"f114549fe8ce49638a791ca2fecb2d89",
"0aa155b794a8426aa265f4a7670f43ad",
"a06fbde549cc47fdaddfbdb82d35d823",
"172c0c6955e1428b999dcb2d133704cd",
"1bf7108774c34016a2193e2cd7639b7d",
"ed28e180d94a4b7aa548581612e31232",
"ff4338faded5494da1ccb660e1c441ed",
"b46a08cf4929422eb0f76d8d9af11249",
"f049eb4a50f54c34912ca959d2eaf353",
"80dfd3e80ceb444a83ec1fd65f9af80e",
"519147a10b984befbd0f255f78c1f66a",
"562e82438dbe41b793ff488b8447c5bf",
"1da83719e47c4196b06f3aa32056b560",
"c4a2c88326d14fbca87cfde073755a2e",
"f0ab5a46cbb0444c88ed137d8a95002b",
"f8f28ac0e149428f9fef42373c6a87d0"
]
},
"id": "5fa9c06c-7a53-4b4d-9ce4-acc027322ee4",
"outputId": "c05118ce-9f81-41c8-a1f2-72caa932ae86"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f3788acce34f4956b0727b58d0cf38c6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ae98969541849efa356cf912ac39b1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9bb60a5a3710463ebe3a17f8d2a446be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00003-of-00004.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed28e180d94a4b7aa548581612e31232",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from safetensors.torch import load_file\n",
"\n",
"combined_weights = {}\n",
"\n",
"for i in range(1, 5):\n",
" weights_file = hf_hub_download(\n",
" repo_id=\"meta-llama/Meta-Llama-3-8B\",\n",
" filename=f\"model-0000{i}-of-00004.safetensors\",\n",
" local_dir=\"llama3-files\"\n",
" )\n",
" current_weights = load_file(weights_file)\n",
" combined_weights.update(current_weights)"
]
},
{
"cell_type": "markdown",
"id": "-15SJ7btq2zE",
"metadata": {
"id": "-15SJ7btq2zE"
},
"source": [
"- The `weights` contains the following tensors (only the first 15 are shown for simplicity):"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "ee26bd0b-fea9-4924-97f7-409c14f28e49",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ee26bd0b-fea9-4924-97f7-409c14f28e49",
"outputId": "2fbc2786-677f-4fea-9472-5fb8542ff14b"
},
"outputs": [
{
"data": {
"text/plain": [
"['model.embed_tokens.weight',\n",
" 'model.layers.0.input_layernorm.weight',\n",
" 'model.layers.0.mlp.down_proj.weight',\n",
" 'model.layers.0.mlp.gate_proj.weight',\n",
" 'model.layers.0.mlp.up_proj.weight',\n",
" 'model.layers.0.post_attention_layernorm.weight',\n",
" 'model.layers.0.self_attn.k_proj.weight',\n",
" 'model.layers.0.self_attn.o_proj.weight',\n",
" 'model.layers.0.self_attn.q_proj.weight',\n",
" 'model.layers.0.self_attn.v_proj.weight',\n",
" 'model.layers.1.input_layernorm.weight',\n",
" 'model.layers.1.mlp.down_proj.weight',\n",
" 'model.layers.1.mlp.gate_proj.weight',\n",
" 'model.layers.1.mlp.up_proj.weight',\n",
" 'model.layers.1.post_attention_layernorm.weight']"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(combined_weights.keys())[:15]"
]
},
{
"cell_type": "markdown",
"id": "UeeSpnunrDFB",
"metadata": {
"id": "UeeSpnunrDFB"
},
"source": [
"- The following function, modeled after the `load_weights_into_gpt` function in [chapter 5](../01_main-chapter-code/ch05.ipynb), loads the pretrained weights into our Llama 3 model:"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "3820e2a7-4f26-41bc-953b-f3879b0aff65",
"metadata": {
"id": "3820e2a7-4f26-41bc-953b-f3879b0aff65"
},
"outputs": [],
"source": [
"def assign(left, right, tensor_name=\"unknown\"):\n",
" if left.shape != right.shape:\n",
" raise ValueError(f\"Shape mismatch in tensor '{tensor_name}'. Left: {left.shape}, Right: {right.shape}\")\n",
"\n",
" if isinstance(right, torch.Tensor):\n",
" return torch.nn.Parameter(right.clone().detach())\n",
" else:\n",
" return torch.nn.Parameter(torch.tensor(right))\n",
"\n",
"\n",
"def load_weights_into_llama(model, param_config, params):\n",
" model.tok_emb.weight = assign(model.tok_emb.weight, params[\"model.embed_tokens.weight\"], \"model.embed_tokens.weight\")\n",
"\n",
" for l in range(param_config[\"n_layers\"]):\n",
"\n",
" # Load attention weights\n",
" model.trf_blocks[l].att.W_query.weight = assign(\n",
" model.trf_blocks[l].att.W_query.weight,\n",
" params[f\"model.layers.{l}.self_attn.q_proj.weight\"],\n",
" f\"model.layers.{l}.self_attn.q_proj.weight\"\n",
" )\n",
" model.trf_blocks[l].att.W_key.weight = assign(\n",
" model.trf_blocks[l].att.W_key.weight,\n",
" params[f\"model.layers.{l}.self_attn.k_proj.weight\"],\n",
" f\"model.layers.{l}.self_attn.k_proj.weight\"\n",
" )\n",
" model.trf_blocks[l].att.W_value.weight = assign(\n",
" model.trf_blocks[l].att.W_value.weight,\n",
" params[f\"model.layers.{l}.self_attn.v_proj.weight\"],\n",
" f\"model.layers.{l}.self_attn.v_proj.weight\"\n",
" )\n",
" model.trf_blocks[l].att.out_proj.weight = assign(\n",
" model.trf_blocks[l].att.out_proj.weight,\n",
" params[f\"model.layers.{l}.self_attn.o_proj.weight\"],\n",
" f\"model.layers.{l}.self_attn.o_proj.weight\"\n",
" )\n",
" model.trf_blocks[l].norm1.weight = assign(\n",
" model.trf_blocks[l].norm1.weight,\n",
" params[f\"model.layers.{l}.input_layernorm.weight\"],\n",
" f\"model.layers.{l}.input_layernorm.weight\"\n",
" )\n",
"\n",
" # Load FeedForward weights\n",
" model.trf_blocks[l].ff.fc1.weight = assign(\n",
" model.trf_blocks[l].ff.fc1.weight,\n",
" params[f\"model.layers.{l}.mlp.gate_proj.weight\"],\n",
" f\"model.layers.{l}.mlp.gate_proj.weight\"\n",
" )\n",
" model.trf_blocks[l].ff.fc2.weight = assign(\n",
" model.trf_blocks[l].ff.fc2.weight,\n",
" params[f\"model.layers.{l}.mlp.up_proj.weight\"],\n",
" f\"model.layers.{l}.mlp.up_proj.weight\"\n",
" )\n",
" model.trf_blocks[l].ff.fc3.weight = assign(\n",
" model.trf_blocks[l].ff.fc3.weight,\n",
" params[f\"model.layers.{l}.mlp.down_proj.weight\"],\n",
" f\"model.layers.{l}.mlp.down_proj.weight\"\n",
" )\n",
" model.trf_blocks[l].norm2.weight = assign(\n",
" model.trf_blocks[l].norm2.weight,\n",
" params[f\"model.layers.{l}.post_attention_layernorm.weight\"],\n",
" f\"model.layers.{l}.post_attention_layernorm.weight\"\n",
" )\n",
"\n",
" # Load output layer weights\n",
" model.final_norm.weight = assign(model.final_norm.weight, params[\"model.norm.weight\"], \"model.norm.weight\")\n",
"\n",
" if \"lm_head.weight\" in params.keys():\n",
" model.out_head.weight = assign(model.out_head.weight, params[\"lm_head.weight\"], \"lm_head.weight\")\n",
" else:\n",
" model.out_head.weight = assign(model.out_head.weight, params[\"model.embed_tokens.weight\"], \"model.embed_tokens.weight\")\n",
" print(\"Model uses weight tying.\")\n",
"\n",
"\n",
"load_weights_into_llama(model, LLAMA3_CONFIG_8B, combined_weights)\n",
"model.to(device);\n",
"del combined_weights # free up memory"
]
},
{
"cell_type": "markdown",
"id": "TDuv_Us2rNvk",
"metadata": {
"id": "TDuv_Us2rNvk"
},
"source": [
"- Next, we are ready to use the model for text generation"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "240987e8-a023-462e-9376-9edfb27559ec",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "240987e8-a023-462e-9376-9edfb27559ec",
"outputId": "6dab0e56-40a8-45db-a096-ab2b9ee97a69"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output text:\n",
" Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. The publisher apologizes for any\n"
]
}
],
"source": [
"torch.manual_seed(123)\n",
"\n",
"token_ids = generate(\n",
" model=model,\n",
" idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
" max_new_tokens=25,\n",
" context_size=LLAMA3_CONFIG_8B[\"context_length\"],\n",
" top_k=1,\n",
" temperature=0.\n",
")\n",
"\n",
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
]
},
{
"cell_type": "markdown",
"id": "1203041e-4794-4157-a978-3ce80909da44",
"metadata": {
"id": "1203041e-4794-4157-a978-3ce80909da44"
},
"source": [
"&nbsp;\n",
"## 5. Using the instruction-finetuned model"
]
},
{
"cell_type": "markdown",
"id": "akyo7WNyF_YL",
"metadata": {
"id": "akyo7WNyF_YL"
},
"source": [
"- Above, we used the pretrained base model; if you want to use a model capable of following instructions, use the `\"meta-llama/Llama-3-8b-Instruct\"` model instead, as shown below"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "hdA-xjjdS26J",
"metadata": {
"id": "hdA-xjjdS26J"
},
"outputs": [],
"source": [
"# to free up memory\n",
"\n",
"import gc\n",
"\n",
"del model\n",
"\n",
"gc.collect() # Run Python garbage collector\n",
"\n",
"if torch.cuda.is_available():\n",
" torch.cuda.empty_cache()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "nbvAV7vaz6yc",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 145,
"referenced_widgets": [
"409470784b6346a981920350de4f6f28",
"9ba6a11ffd194bf9a0900f52a7ed4d4f",
"acae8bbbb4a84ed49be72fecd11fb052",
"e8a4b441281b4038bb0204d093411f68",
"bdf8b693821344fc97918e6cbc31c8bf",
"97e8877869cd4be68ff38ce745be5045",
"cc3da88e93c4499993b7bbb7d3064326",
"0d51fdc2c416474da04079db6579890f",
"c4598300a77b4667b1117f9499f5ccb7",
"77606cd2fe1b4d33a91ede944bb1dec0",
"f1ba439c26d64c90af2f162c74348405",
"d598f094c3ce4daeab19fac8094cba7e",
"0afc2d23514b45c9890b5d2ee4e6fa0b",
"3da5d38bf3314d3eaa7cedebae41c076",
"55e6b727a4594078beb3853cc1891308",
"f17fa78263414ef8b414c7bf3ac03192",
"e8b187b40ec14db3af17a380830a35bf",
"e94ca32eaa9f4714a3b05a5fdf24d02b",
"3edd464991204b8690eae02f10b4cc00",
"ac1e34f4bd6c420bb6cc2fdde5f3ed4d",
"1cd5e07cad35450182004952de32c8e7",
"a63351a6715643378491ba831b3fb05d",
"98b4680141ee423bb5e43c47613d8440",
"b02ffefca3f34252914e76f4a8a467dc",
"31d27bf34a74432f8e0dbfe9ecb76130",
"a3137f3669b54e84be91010c9654d985",
"5a2886564d3f40ceaa30b743dbe81f45",
"15ea8fcfe097471e8fc9502a162f5904",
"c779e80c50ba4434bfa1d326c5cc9b0f",
"eb94612785e64552aea8674dc8647a93",
"279cffe683fe4e7383062162e07ed9ed",
"6176990205cc499f8995c71fc6b9d4df",
"66c23ae98bcc45f18fc5c91e0e73c3e4",
"05b502e1e3a9436297dafbb1ce7af722",
"25977b0d89084703ad787fe9208b5aad",
"71a84ee5fc964ec89ff2832c84735cc2",
"6aed783eccb942318e6384e253ad4924",
"84c34bfecda64391a609e19f131d51d4",
"20ecac7c646b45938ed393cb20977c37",
"ebe04aeaaac042aaaa0885992e45793d",
"ca81071ab07446df96795a482ce0c630",
"e0550cab24c7492787af40dc4b8576bf",
"7015bf6f85954036aaf8cc4f1c44ea0f",
"2a2ba3d065634484a932b8d3c212af56"
]
},
"id": "nbvAV7vaz6yc",
"outputId": "9e1badc9-a6c4-48b7-9125-e0810655528b"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "409470784b6346a981920350de4f6f28",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d598f094c3ce4daeab19fac8094cba7e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "98b4680141ee423bb5e43c47613d8440",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00003-of-00004.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05b502e1e3a9436297dafbb1ce7af722",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"combined_weights = {}\n",
"\n",
"for i in range(1, 5):\n",
" weights_file = hf_hub_download(\n",
" repo_id=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
" filename=f\"model-0000{i}-of-00004.safetensors\",\n",
" local_dir=\"llama3-files\"\n",
" )\n",
" current_weights = load_file(weights_file)\n",
" combined_weights.update(current_weights)\n",
"\n",
"\n",
"model = Llama3Model(LLAMA3_CONFIG_8B)\n",
"load_weights_into_llama(model, LLAMA3_CONFIG_8B, combined_weights)\n",
"model.to(device)\n",
"del combined_weights # free up memory"
]
},
{
"cell_type": "markdown",
"id": "VlH7qYVdDKQr",
"metadata": {
"id": "VlH7qYVdDKQr"
},
"source": [
"- Note that the Llama 3 model should ideally used with the correct prompt template that was used during finetuning (as discussed in chapter 7)\n",
"- Below is a wrapper class around the tokenizer based on Meta AI's Llama 3-specific [ChatFormat code](https://github.com/meta-llama/llama3/blob/11817d47e1ba7a4959b025eb1ca308572e0e3963/llama/tokenizer.py#L202) that constructs the prompt template"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "4be5b481-1110-46e8-a931-3988d890cf8c",
"metadata": {
"id": "4be5b481-1110-46e8-a931-3988d890cf8c"
},
"outputs": [],
"source": [
"class ChatFormat:\n",
" def __init__(self, tokenizer):\n",
" self.tokenizer = tokenizer\n",
"\n",
" def encode_header(self, message):\n",
" tokens = []\n",
" tokens.append(self.tokenizer.special_tokens[\"<|start_header_id|>\"])\n",
" tokens.extend(self.tokenizer.encode(message[\"role\"], bos=False, eos=False))\n",
" tokens.append(self.tokenizer.special_tokens[\"<|end_header_id|>\"])\n",
" tokens.extend(self.tokenizer.encode(\"\\n\\n\", bos=False, eos=False))\n",
" return tokens\n",
"\n",
" def encode(self, text):\n",
" message = {\n",
" \"role\": \"user\",\n",
" \"content\": text\n",
" }\n",
"\n",
" tokens = self.encode_header(message)\n",
" tokens.extend(\n",
" self.tokenizer.encode(message[\"content\"].strip(), bos=False, eos=False)\n",
" )\n",
" tokens.append(self.tokenizer.special_tokens[\"<|eot_id|>\"])\n",
" return tokens\n",
"\n",
" def decode(self, token_ids):\n",
" return self.tokenizer.decode(token_ids)\n",
"\n",
"\n",
"chat_tokenizer = ChatFormat(tokenizer)"
]
},
{
"cell_type": "markdown",
"id": "M-dkSNvwDttN",
"metadata": {
"id": "M-dkSNvwDttN"
},
"source": [
"- The usage is as follows:"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "nwBrTGTsUNhn",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "nwBrTGTsUNhn",
"outputId": "72a495b4-b872-429a-88ef-49a9b4577f0f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[128006, 882, 128007, 271, 9906, 4435, 0, 128009]\n"
]
}
],
"source": [
"token_ids = chat_tokenizer.encode(\"Hello World!\")\n",
"print(token_ids)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "0fpmpVgYVTRZ",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 36
},
"id": "0fpmpVgYVTRZ",
"outputId": "bb3e819a-112a-466c-ac51-5d14a9c3475b"
},
"outputs": [
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'<|start_header_id|>user<|end_header_id|>\\n\\nHello World!<|eot_id|>'"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer.decode(token_ids)"
]
},
{
"cell_type": "markdown",
"id": "Wo-aUGeKDvqq",
"metadata": {
"id": "Wo-aUGeKDvqq"
},
"source": [
"- Let's now see the Llama 3 instruction model in action:"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "ozGOBu6XOkEW",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ozGOBu6XOkEW",
"outputId": "4f689c70-bed9-46f3-a52a-aea47b641283"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output text:\n",
" Llamas are herbivores, which means they primarily eat plants and plant-based foods. Here are some of the things llamas like to eat:\n",
"\n",
"1. Grass: Llamas love to graze on grass, especially in the spring and summer months.\n",
"2. Hay: Hay is a staple in a llama's diet. They like to eat timothy hay, alfalfa hay, and other types of hay.\n",
"3. Grains: Llamas may also be fed grains like oats, barley, and corn. However, grains should not make up more than 10% of a llama's diet.\n",
"4. Fruits and vegetables: Llamas may enjoy fruits and vegetables as treats, such as apples,\n"
]
}
],
"source": [
"import re\n",
"\n",
"\n",
"torch.manual_seed(123)\n",
"\n",
"token_ids = generate(\n",
" model=model,\n",
" idx=text_to_token_ids(\"What do llamas eat?\", chat_tokenizer).to(device),\n",
" max_new_tokens=150,\n",
" context_size=LLAMA3_CONFIG_8B[\"context_length\"],\n",
" top_k=1,\n",
" temperature=0.\n",
")\n",
"\n",
"output_text = token_ids_to_text(token_ids, tokenizer)\n",
"\n",
"\n",
"def clean_text(text, header_end=\"assistant<|end_header_id|>\\n\\n\"):\n",
" # Find the index of the first occurrence of \"<|end_header_id|>\"\n",
" index = text.find(header_end)\n",
"\n",
" if index != -1:\n",
" # Return the substring starting after \"<|end_header_id|>\"\n",
" return text[index + len(header_end):].strip() # Strip removes leading/trailing whitespace\n",
" else:\n",
" # If the token is not found, return the original text\n",
" return text\n",
"\n",
"print(\"Output text:\\n\", clean_text(output_text))"
]
},
{
"cell_type": "markdown",
"id": "2r5JKrO-ZOHK",
"metadata": {
"id": "2r5JKrO-ZOHK"
},
"source": [
"&nbsp;\n",
"# Llama 3.1 8B"
]
},
{
"cell_type": "markdown",
"id": "QiQxX0XnP_iC",
"metadata": {
"id": "QiQxX0XnP_iC"
},
"source": [
"- A few months after the initial Llama 3 release, Meta AI followed up with their Llama 3.1 suite of models (see the official [Introducing Llama 3.1: Our most capable models to date](https://ai.meta.com/blog/meta-llama-3-1/) announcement blog post for details)\n",
"- Conveniently, we can reuse our previous Llama 3 code from above to implement Llama 3.1 8B\n",
"\n",
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/llama3-to-llama31.webp\" width=\"700px\">\n",
"\n",
"- The architecture is identical, with the only change being a rescaling of the RoPE frequencies as indicated in the configuration file below\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "X5Fg8XUHMv4M",
"metadata": {
"id": "X5Fg8XUHMv4M"
},
"outputs": [],
"source": [
"LLAMA3_CONFIG_8B = {\n",
" \"vocab_size\": 128_256, # Vocabulary size\n",
" \"context_length\": 8192, # Context length\n",
" \"emb_dim\": 4096, # Embedding dimension\n",
" \"n_heads\": 32, # Number of attention heads\n",
" \"n_layers\": 32, # Number of layers\n",
" \"hidden_dim\": 14_336, # Size of the intermediate dimension in FeedForward\n",
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
" \"rope_base\": 50_000, # The base in RoPE's \"theta\"\n",
" \"rope_freq\": None, # Additional configuration for adjusting the RoPE frequencies\n",
" \"dtype\": torch.bfloat16 # Lower-precision dtype to save memory\n",
"}\n",
"\n",
"LLAMA31_CONFIG_8B = {\n",
" \"vocab_size\": 128_256, # Vocabulary size\n",
" \"context_length\": 8192, # Context length\n",
" \"emb_dim\": 4096, # Embedding dimension\n",
" \"n_heads\": 32, # Number of attention heads\n",
" \"n_layers\": 32, # Number of layers\n",
" \"hidden_dim\": 14_336, # Size of the intermediate dimension in FeedForward\n",
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
" \"rope_base\": 50_000, # The base in RoPE's \"theta\"\n",
" \"dtype\": torch.bfloat16, # Lower-precision dtype to save memory\n",
" \"rope_freq\": { # NEW: RoPE frequency scaling\n",
" \"factor\": 8.0,\n",
" \"low_freq_factor\": 1.0,\n",
" \"high_freq_factor\": 4.0,\n",
" \"original_context_length\": 8192,\n",
" }\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "xa3bpMDtTdBs",
"metadata": {
"id": "xa3bpMDtTdBs"
},
"source": [
"- As we've seen in the code earlier, the RoPE method uses sinusoidal functions (sine and cosine) to embed positional information directly into the attention mechanism\n",
"- In Llama 3.1, via the additional configuration, we introduce additional adjustments to the inverse frequency calculations\n",
"- These adjustments influence how different frequency components contribute to the positional embeddings (a detailed explanation is a topic for another time)\n",
"- Let's try out the Llama 3.1 model in practice; first, we clear out the old model to free up some GPU memory"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "7dUtYnNUOqhL",
"metadata": {
"id": "7dUtYnNUOqhL"
},
"outputs": [],
"source": [
"# free up memory\n",
"del model\n",
"\n",
"gc.collect() # Run Python garbage collector\n",
"\n",
"if torch.cuda.is_available():\n",
" torch.cuda.empty_cache()"
]
},
{
"cell_type": "markdown",
"id": "DbbVsll6TYWR",
"metadata": {
"id": "DbbVsll6TYWR"
},
"source": [
"- Next, we download the tokenizer\n",
"- Note that since the Llama 3.1 family is distinct from the Llama 3 family, you'd have to go to the [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) repository and acknowledge the license terms for your Hugging Face access token to work for the download\n",
"- Tip: For simplicity, we only load the base model below, but there's also an instruction-finetuned version you can use by replacing `\"meta-llama/Llama-3.1-8B\"` with `\"meta-llama/Llama-3.1-8B-Instruct\"`"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "8xDk4chtPNU4",
"metadata": {
"id": "8xDk4chtPNU4"
},
"outputs": [],
"source": [
"tokenizer_file_path = hf_hub_download(\n",
" repo_id=\"meta-llama/Llama-3.1-8B\",\n",
" filename=\"original/tokenizer.model\",\n",
" local_dir=\"llama3-files\"\n",
")\n",
"\n",
"tokenizer = Tokenizer(tokenizer_file_path)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "a7l21VE4Otcs",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "a7l21VE4Otcs",
"outputId": "3dd5cfba-bf3f-44d2-9be1-7cd42bfe4ba9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of parameters: 8,030,261,248\n"
]
}
],
"source": [
"model = Llama3Model(LLAMA31_CONFIG_8B)\n",
"\n",
"total_params = sum(p.numel() for p in model.parameters())\n",
"print(f\"Total number of parameters: {total_params:,}\")"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "u4J7IxOvOyPM",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 145,
"referenced_widgets": [
"5bbaa046d8934c8fae0a12c3d7bd991b",
"e1e4125eac004bae92dc1f22f673bf0e",
"d5b4bb4891ec4e44be46e9815c7e10dc",
"4f6595a392b244bd8e887935defc06f0",
"100c1b15cc4046cea1147f657eb2d8d0",
"81458e7953a349cfafccaa213b370406",
"a3dc9dfadae642b4a873705596739468",
"f55b59efcefa4ad5955d082f4bf7c637",
"1b02e0c7d1604b1c87a327c4c4f8b0e7",
"02ad170019454fd096b37347de5c481d",
"c52e0f34892b4daa84c1bf61500ac399",
"af985cf6fa26475eb2c4dd81e0c79ff4",
"8659c3eddb014c3bb5931fd9e6fadad8",
"f5fa00d96c4c49e48e1806d23a5b8570",
"080c484114f64f5591fa1287a35b46c9",
"14dc6a3717484c55a116612e28447dbb",
"00d3286c9c1d4161bb777b7b65ae744d",
"66f27fb11edf453b8144c2dfcdc66baa",
"5798e5118430439fb1f6bf29e1bafe58",
"357f367cf74146b8825be371acd51d06",
"94073be250cd42d5b82e196e30cbf22e",
"0cd0724f825e480389a82f0c49f91e6d",
"dffa208978f34e6a9aae94ecda92fe67",
"b8a98f163ebd4ac89af08a49c0881c23",
"f0d9febe1a634a0ba7e8e50fa104dcc2",
"e23870f0c7ff40cc8fa6a1e862a4af99",
"87da9905a0534c26ad0712ad426ca930",
"b953419300604b8e86fc0ad003fdfd2f",
"f1865ed0fbcc40eeabdca90a43d00069",
"ea0128909a9d4801ba312a876b0cf183",
"d160986df978416c9ad91d1e10fc90fc",
"5e97f7c2e8f5453dafcdad0552060e60",
"4b3e7b8774df4b458bb6c6146fe3226d",
"2ffd8dbed00e46d2887b9a2590cad297",
"a06dcb3bdfc84905a7222066c32fe500",
"e7602abc26714ee890a0cf5c0c7b67e1",
"dc5d555099f64a998514ebde90eeb6df",
"ef93a2f58cc54373941f43658bb808cf",
"fea1e2327d2944859af3d91c216b9008",
"320c00a5d18c45ccae634d166f1bd810",
"6c857e69d5204cd3b7c3bf426993ad1f",
"2145e47428f1446fba3e62b3cde0a7f5",
"3d519ce3562c4e249bf392c7f43d04c0",
"cc20ffcf0c1a4656945959bf457dfd84"
]
},
"id": "u4J7IxOvOyPM",
"outputId": "925348d7-fc69-4d1b-90f1-7029426bcfcf"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5bbaa046d8934c8fae0a12c3d7bd991b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "af985cf6fa26475eb2c4dd81e0c79ff4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dffa208978f34e6a9aae94ecda92fe67",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00003-of-00004.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2ffd8dbed00e46d2887b9a2590cad297",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"combined_weights = {}\n",
"\n",
"for i in range(1, 5):\n",
" weights_file = hf_hub_download(\n",
" repo_id=\"meta-llama/Llama-3.1-8B\",\n",
" filename=f\"model-0000{i}-of-00004.safetensors\",\n",
" local_dir=\"llama3-files\"\n",
" )\n",
" current_weights = load_file(weights_file)\n",
" combined_weights.update(current_weights)\n",
"\n",
"load_weights_into_llama(model, LLAMA31_CONFIG_8B, combined_weights)\n",
"model.to(device);"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "wJFnF8ATPbtD",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "wJFnF8ATPbtD",
"outputId": "67d5cb66-3588-4fd4-ac75-39bfe3aa82d8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output text:\n",
" Every effort has been made to trace copyright holders and to obtain their permission for the use of copyright material. The publisher apologizes for any\n"
]
}
],
"source": [
"torch.manual_seed(123)\n",
"\n",
"token_ids = generate(\n",
" model=model,\n",
" idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
" max_new_tokens=25,\n",
" context_size=LLAMA31_CONFIG_8B[\"context_length\"],\n",
" top_k=1,\n",
" temperature=0.\n",
")\n",
"\n",
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
]
},
{
"cell_type": "markdown",
"id": "DR9NBDUjPrDp",
"metadata": {
"id": "DR9NBDUjPrDp"
},
"source": [
"&nbsp;\n",
"# Llama 3.2 1B"
]
},
{
"cell_type": "markdown",
"id": "imoxFiDzJcxk",
"metadata": {
"id": "imoxFiDzJcxk"
},
"source": [
"- As of this writing, Meta AI's latest models are the Llama 3.2 models announced [here](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/)\n",
"- The code for the Llama 3.2 text model is similar to that of Llama 3.1, except that the model has shrunk in size (there is a 1B and 3B version)\n",
"- The other efficiency tweak was that they added back weight tying (a concept that was original used in the GPT-2 architecture); here, they reuse the same weight parameter values in the input (token) embedding layer and output layer\n",
"- The small model size of Llama 3.2 1B is quite convenient, since it can even run on many mobile devices\n",
"- The architectural differences between Llama 3.1 8B and Llama 3.2 1B are illustrated in the figure below"
]
},
{
"cell_type": "markdown",
"id": "OL1EoXQ6TPb7",
"metadata": {
"id": "OL1EoXQ6TPb7"
},
"source": [
"<img src=\"https://sebastianraschka.com/images/LLMs-from-scratch-images/bonus/gpt-to-llama/llama31-to-llama32.webp?1\" width=\"700px\">"
]
},
{
"cell_type": "markdown",
"id": "K0KgjwCCJ9Fb",
"metadata": {
"id": "K0KgjwCCJ9Fb"
},
"source": [
"- As we can see based on the figure above, the main difference between the Llama 3.1 8B and Llama 3.2 1B architectures are the respective sizes\n",
"- A small additional change is an increased RoPE rescaling factor, which is reflected in the configuration file below"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "Yv_yF3NCQTBx",
"metadata": {
"id": "Yv_yF3NCQTBx"
},
"outputs": [],
"source": [
"LLAMA31_CONFIG_8B = {\n",
" \"vocab_size\": 128_256, # Vocabulary size\n",
" \"context_length\": 8192, # Context length\n",
" \"emb_dim\": 4096, # Embedding dimension\n",
" \"n_heads\": 32, # Number of attention heads\n",
" \"n_layers\": 32, # Number of layers\n",
" \"hidden_dim\": 14_336, # Size of the intermediate dimension in FeedForward\n",
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
" \"rope_base\": 50_000, # The base in RoPE's \"theta\"\n",
" \"dtype\": torch.bfloat16, # Lower-precision dtype to save memory\n",
" \"rope_freq\": { # RoPE frequency scaling\n",
" \"factor\": 8.0,\n",
" \"low_freq_factor\": 1.0,\n",
" \"high_freq_factor\": 4.0,\n",
" \"original_context_length\": 8192,\n",
" }\n",
"}\n",
"\n",
"\n",
"LLAMA32_CONFIG_1B = {\n",
" \"vocab_size\": 128_256, # Vocabulary size\n",
" \"context_length\": 8192, # Context length\n",
" \"emb_dim\": 2048, # NEW: Half the embedding dimension\n",
" \"n_heads\": 32, # Number of attention heads\n",
" \"n_layers\": 16, # NEW: Half the number of layers\n",
" \"hidden_dim\": 8192, # NEW: Almopst half the size of the intermediate dimension in FeedForward\n",
" \"n_kv_groups\": 8, # Key-Value groups for grouped-query attention\n",
" \"rope_base\": 50_000, # The base in RoPE's \"theta\"\n",
" \"dtype\": torch.bfloat16, # Lower-precision dtype to save memory\n",
" \"rope_freq\": { # RoPE frequency scaling\n",
" \"factor\": 32.0, # NEW: Adjustment of the rescaling factor\n",
" \"low_freq_factor\": 1.0,\n",
" \"high_freq_factor\": 4.0,\n",
" \"original_context_length\": 8192,\n",
" }\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "Dl4_0EoJKKYv",
"metadata": {
"id": "Dl4_0EoJKKYv"
},
"source": [
"- Below, we can reuse the code from the Llama 3.1 8B section to load the Llama 3.2 1B model\n",
"- Again, since the Llama 3.2 family is distinct from the Llama 3.1 family, you'd have to go to the [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) repository and acknowledge the license terms for your Hugging Face access token to work for the download\n",
"- Tip: For simplicity, we only load the base model below, but there's also an instruction-finetuned version you can use by replacing `\"meta-llama/Llama-3.2-1B\"` with `\"meta-llama/Llama-3.2-1B-Instruct\"`"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "tCstHgyRRD2x",
"metadata": {
"id": "tCstHgyRRD2x"
},
"outputs": [],
"source": [
"# free up memory\n",
"del model\n",
"\n",
"\n",
"gc.collect() # Run Python garbage collector\n",
"\n",
"if torch.cuda.is_available():\n",
" torch.cuda.empty_cache()"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "jt8BKAHXRCPI",
"metadata": {
"id": "jt8BKAHXRCPI"
},
"outputs": [],
"source": [
"tokenizer_file_path = hf_hub_download(\n",
" repo_id=\"meta-llama/Llama-3.2-1B\",\n",
" filename=\"original/tokenizer.model\",\n",
" local_dir=\"llama32-files\"\n",
")\n",
"\n",
"tokenizer = Tokenizer(tokenizer_file_path)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "uf8KjasmRFSt",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "uf8KjasmRFSt",
"outputId": "4e718852-2aa1-4b5a-bec3-3d5f866a4038"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total number of parameters: 1,498,482,688\n",
"\n",
"Total number of unique parameters: 1,235,814,400\n"
]
}
],
"source": [
"model = Llama3Model(LLAMA32_CONFIG_1B)\n",
"\n",
"total_params = sum(p.numel() for p in model.parameters())\n",
"print(f\"Total number of parameters: {total_params:,}\")\n",
"\n",
"# Account for weight tying\n",
"total_params_normalized = total_params - model.tok_emb.weight.numel()\n",
"print(f\"\\nTotal number of unique parameters: {total_params_normalized:,}\")"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "9FbCIYW7RIOe",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9FbCIYW7RIOe",
"outputId": "35588405-e2e1-4871-a1db-1d4bcb852e49"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model uses weight tying.\n"
]
}
],
"source": [
"weights_file = hf_hub_download(\n",
" repo_id=\"meta-llama/Llama-3.2-1B\",\n",
" filename=f\"model.safetensors\",\n",
" local_dir=\"llama32-files\"\n",
")\n",
"current_weights = load_file(weights_file)\n",
"\n",
"load_weights_into_llama(model, LLAMA32_CONFIG_1B, current_weights)\n",
"model.to(device);"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "pPp5yjir6FYJ",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pPp5yjir6FYJ",
"outputId": "6c8e79d2-0769-43a7-93b3-f04c030e1aac"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Weight tying: True\n"
]
}
],
"source": [
"print(\"Weight tying:\", torch.equal(model.tok_emb.weight, model.out_head.weight))"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "3kh7yrw2W4qr",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3kh7yrw2W4qr",
"outputId": "b7e66a17-57ec-4b0e-c4ff-8d9a6b8e6ea5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Output text:\n",
" Every effort is made to ensure that the information on this website is accurate. However, we cannot guarantee that the information is accurate, complete\n"
]
}
],
"source": [
"torch.manual_seed(123)\n",
"\n",
"token_ids = generate(\n",
" model=model,\n",
" idx=text_to_token_ids(\"Every effort\", tokenizer).to(device),\n",
" max_new_tokens=25,\n",
" context_size=LLAMA32_CONFIG_1B[\"context_length\"],\n",
" top_k=1,\n",
" temperature=0.\n",
")\n",
"\n",
"print(\"Output text:\\n\", token_ids_to_text(token_ids, tokenizer))"
]
},
{
"cell_type": "markdown",
"id": "VO4Qf0zyW1ZC",
"metadata": {
"id": "VO4Qf0zyW1ZC"
},
"source": [
"&nbsp;\n",
"# What's next?"
]
},
{
"cell_type": "markdown",
"id": "CjCewpo2XPAd",
"metadata": {
"id": "CjCewpo2XPAd"
},
"source": [
"- This notebook concludes the conversion from GPT to Llama 3.2\n",
"- If you are interested in a more compact, standalone notebook, which only contains the Llama 3.2 code, check out the [standalone-llama32.ipynb](standalone-llama32.ipynb) notebook"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "A100",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"00148825ce0248b7a23eb28e3eca6749": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"00d3286c9c1d4161bb777b7b65ae744d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"02ad170019454fd096b37347de5c481d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"05b502e1e3a9436297dafbb1ce7af722": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_25977b0d89084703ad787fe9208b5aad",
"IPY_MODEL_71a84ee5fc964ec89ff2832c84735cc2",
"IPY_MODEL_6aed783eccb942318e6384e253ad4924"
],
"layout": "IPY_MODEL_84c34bfecda64391a609e19f131d51d4"
}
},
"080c484114f64f5591fa1287a35b46c9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_94073be250cd42d5b82e196e30cbf22e",
"placeholder": "",
"style": "IPY_MODEL_0cd0724f825e480389a82f0c49f91e6d",
"value": "5.00G/5.00G[00:15&lt;00:00,326MB/s]"
}
},
"0a08fb81165748748ccb080e6df0600f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9d49589118f5432cac49650251046429",
"placeholder": "",
"style": "IPY_MODEL_f114549fe8ce49638a791ca2fecb2d89",
"value": "model-00003-of-00004.safetensors:100%"
}
},
"0aa155b794a8426aa265f4a7670f43ad": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0afc2d23514b45c9890b5d2ee4e6fa0b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e8b187b40ec14db3af17a380830a35bf",
"placeholder": "",
"style": "IPY_MODEL_e94ca32eaa9f4714a3b05a5fdf24d02b",
"value": "model-00002-of-00004.safetensors:100%"
}
},
"0cd0724f825e480389a82f0c49f91e6d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"0d51fdc2c416474da04079db6579890f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"100c1b15cc4046cea1147f657eb2d8d0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"14dc6a3717484c55a116612e28447dbb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"15ea8fcfe097471e8fc9502a162f5904": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"172c0c6955e1428b999dcb2d133704cd": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1b02e0c7d1604b1c87a327c4c4f8b0e7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"1bf7108774c34016a2193e2cd7639b7d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"1cd5e07cad35450182004952de32c8e7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1da83719e47c4196b06f3aa32056b560": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"20ecac7c646b45938ed393cb20977c37": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2145e47428f1446fba3e62b3cde0a7f5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"25977b0d89084703ad787fe9208b5aad": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_20ecac7c646b45938ed393cb20977c37",
"placeholder": "",
"style": "IPY_MODEL_ebe04aeaaac042aaaa0885992e45793d",
"value": "model-00004-of-00004.safetensors:100%"
}
},
"279cffe683fe4e7383062162e07ed9ed": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"2a2ba3d065634484a932b8d3c212af56": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"2ffd8dbed00e46d2887b9a2590cad297": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_a06dcb3bdfc84905a7222066c32fe500",
"IPY_MODEL_e7602abc26714ee890a0cf5c0c7b67e1",
"IPY_MODEL_dc5d555099f64a998514ebde90eeb6df"
],
"layout": "IPY_MODEL_ef93a2f58cc54373941f43658bb808cf"
}
},
"31d27bf34a74432f8e0dbfe9ecb76130": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_eb94612785e64552aea8674dc8647a93",
"max": 4915916176,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_279cffe683fe4e7383062162e07ed9ed",
"value": 4915916176
}
},
"320c00a5d18c45ccae634d166f1bd810": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"357f367cf74146b8825be371acd51d06": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"3cea4b431147441a8d9bd872811d5974": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"3d519ce3562c4e249bf392c7f43d04c0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3da5d38bf3314d3eaa7cedebae41c076": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_3edd464991204b8690eae02f10b4cc00",
"max": 4999802720,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_ac1e34f4bd6c420bb6cc2fdde5f3ed4d",
"value": 4999802720
}
},
"3edd464991204b8690eae02f10b4cc00": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"409470784b6346a981920350de4f6f28": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_9ba6a11ffd194bf9a0900f52a7ed4d4f",
"IPY_MODEL_acae8bbbb4a84ed49be72fecd11fb052",
"IPY_MODEL_e8a4b441281b4038bb0204d093411f68"
],
"layout": "IPY_MODEL_bdf8b693821344fc97918e6cbc31c8bf"
}
},
"4b3e7b8774df4b458bb6c6146fe3226d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"4f6595a392b244bd8e887935defc06f0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_02ad170019454fd096b37347de5c481d",
"placeholder": "",
"style": "IPY_MODEL_c52e0f34892b4daa84c1bf61500ac399",
"value": "4.98G/4.98G[00:16&lt;00:00,316MB/s]"
}
},
"519147a10b984befbd0f255f78c1f66a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"55e6b727a4594078beb3853cc1891308": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_1cd5e07cad35450182004952de32c8e7",
"placeholder": "",
"style": "IPY_MODEL_a63351a6715643378491ba831b3fb05d",
"value": "5.00G/5.00G[00:16&lt;00:00,291MB/s]"
}
},
"562e82438dbe41b793ff488b8447c5bf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"5798e5118430439fb1f6bf29e1bafe58": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"58c9dec75a3346b1b787f88dd510d254": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5a2886564d3f40ceaa30b743dbe81f45": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"5bbaa046d8934c8fae0a12c3d7bd991b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_e1e4125eac004bae92dc1f22f673bf0e",
"IPY_MODEL_d5b4bb4891ec4e44be46e9815c7e10dc",
"IPY_MODEL_4f6595a392b244bd8e887935defc06f0"
],
"layout": "IPY_MODEL_100c1b15cc4046cea1147f657eb2d8d0"
}
},
"5e97f7c2e8f5453dafcdad0552060e60": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"6022a9426683420690d9b41a0ca4f870": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9492edc02dee456f840325d913fa4e4f",
"placeholder": "",
"style": "IPY_MODEL_66dc94b23556499f985f8accbb1f89cb",
"value": "model-00001-of-00004.safetensors:100%"
}
},
"603690f543114a7fb6aebd433c80bdc3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0aa155b794a8426aa265f4a7670f43ad",
"max": 4915916176,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_a06fbde549cc47fdaddfbdb82d35d823",
"value": 4915916176
}
},
"616e383bb3d442bcb6edb2721a8180b6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_8ba9f009e92a46fcbcbb401dc444f12e",
"placeholder": "",
"style": "IPY_MODEL_d74186bb74d142dfb683fa347b6990f7",
"value": "5.00G/5.00G[00:16&lt;00:00,305MB/s]"
}
},
"6176990205cc499f8995c71fc6b9d4df": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"66c23ae98bcc45f18fc5c91e0e73c3e4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"66dc94b23556499f985f8accbb1f89cb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"66f27fb11edf453b8144c2dfcdc66baa": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"6aed783eccb942318e6384e253ad4924": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7015bf6f85954036aaf8cc4f1c44ea0f",
"placeholder": "",
"style": "IPY_MODEL_2a2ba3d065634484a932b8d3c212af56",
"value": "1.17G/1.17G[00:04&lt;00:00,297MB/s]"
}
},
"6c857e69d5204cd3b7c3bf426993ad1f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7015bf6f85954036aaf8cc4f1c44ea0f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"71a84ee5fc964ec89ff2832c84735cc2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ca81071ab07446df96795a482ce0c630",
"max": 1168138808,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_e0550cab24c7492787af40dc4b8576bf",
"value": 1168138808
}
},
"7266a729edfb4a44b5b1c67dc79be146": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"76dbab4873f342019c5d7624ae2c9775": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"773b802daed942f5a11f3eab3b83be08": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_172c0c6955e1428b999dcb2d133704cd",
"placeholder": "",
"style": "IPY_MODEL_1bf7108774c34016a2193e2cd7639b7d",
"value": "4.92G/4.92G[00:16&lt;00:00,297MB/s]"
}
},
"77606cd2fe1b4d33a91ede944bb1dec0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7989003a613e45f780d3f800e121543a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7c6658cfff1a4d27af3de148184f77d9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"80dfd3e80ceb444a83ec1fd65f9af80e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"81458e7953a349cfafccaa213b370406": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"84c34bfecda64391a609e19f131d51d4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8659c3eddb014c3bb5931fd9e6fadad8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_00d3286c9c1d4161bb777b7b65ae744d",
"placeholder": "",
"style": "IPY_MODEL_66f27fb11edf453b8144c2dfcdc66baa",
"value": "model-00002-of-00004.safetensors:100%"
}
},
"87da9905a0534c26ad0712ad426ca930": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"87f474861e54432e9d533e0a89bb77da": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8ae98969541849efa356cf912ac39b1e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_f9373112649945e3b446c3e1ec274dc1",
"IPY_MODEL_d49791082a304ade95c185c79fae1f41",
"IPY_MODEL_616e383bb3d442bcb6edb2721a8180b6"
],
"layout": "IPY_MODEL_87f474861e54432e9d533e0a89bb77da"
}
},
"8ba9f009e92a46fcbcbb401dc444f12e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"94073be250cd42d5b82e196e30cbf22e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9492edc02dee456f840325d913fa4e4f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"97e8877869cd4be68ff38ce745be5045": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"98b4680141ee423bb5e43c47613d8440": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_b02ffefca3f34252914e76f4a8a467dc",
"IPY_MODEL_31d27bf34a74432f8e0dbfe9ecb76130",
"IPY_MODEL_a3137f3669b54e84be91010c9654d985"
],
"layout": "IPY_MODEL_5a2886564d3f40ceaa30b743dbe81f45"
}
},
"9ba6a11ffd194bf9a0900f52a7ed4d4f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_97e8877869cd4be68ff38ce745be5045",
"placeholder": "",
"style": "IPY_MODEL_cc3da88e93c4499993b7bbb7d3064326",
"value": "model-00001-of-00004.safetensors:100%"
}
},
"9bb60a5a3710463ebe3a17f8d2a446be": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_0a08fb81165748748ccb080e6df0600f",
"IPY_MODEL_603690f543114a7fb6aebd433c80bdc3",
"IPY_MODEL_773b802daed942f5a11f3eab3b83be08"
],
"layout": "IPY_MODEL_7989003a613e45f780d3f800e121543a"
}
},
"9d49589118f5432cac49650251046429": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a06dcb3bdfc84905a7222066c32fe500": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_fea1e2327d2944859af3d91c216b9008",
"placeholder": "",
"style": "IPY_MODEL_320c00a5d18c45ccae634d166f1bd810",
"value": "model-00004-of-00004.safetensors:100%"
}
},
"a06fbde549cc47fdaddfbdb82d35d823": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"a3137f3669b54e84be91010c9654d985": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_6176990205cc499f8995c71fc6b9d4df",
"placeholder": "",
"style": "IPY_MODEL_66c23ae98bcc45f18fc5c91e0e73c3e4",
"value": "4.92G/4.92G[00:16&lt;00:00,297MB/s]"
}
},
"a3dc9dfadae642b4a873705596739468": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a63351a6715643378491ba831b3fb05d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ac1e34f4bd6c420bb6cc2fdde5f3ed4d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"acae8bbbb4a84ed49be72fecd11fb052": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0d51fdc2c416474da04079db6579890f",
"max": 4976698672,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_c4598300a77b4667b1117f9499f5ccb7",
"value": 4976698672
}
},
"af985cf6fa26475eb2c4dd81e0c79ff4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_8659c3eddb014c3bb5931fd9e6fadad8",
"IPY_MODEL_f5fa00d96c4c49e48e1806d23a5b8570",
"IPY_MODEL_080c484114f64f5591fa1287a35b46c9"
],
"layout": "IPY_MODEL_14dc6a3717484c55a116612e28447dbb"
}
},
"b02ffefca3f34252914e76f4a8a467dc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_15ea8fcfe097471e8fc9502a162f5904",
"placeholder": "",
"style": "IPY_MODEL_c779e80c50ba4434bfa1d326c5cc9b0f",
"value": "model-00003-of-00004.safetensors:100%"
}
},
"b46a08cf4929422eb0f76d8d9af11249": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_1da83719e47c4196b06f3aa32056b560",
"max": 1168138808,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_c4a2c88326d14fbca87cfde073755a2e",
"value": 1168138808
}
},
"b8a98f163ebd4ac89af08a49c0881c23": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b953419300604b8e86fc0ad003fdfd2f",
"placeholder": "",
"style": "IPY_MODEL_f1865ed0fbcc40eeabdca90a43d00069",
"value": "model-00003-of-00004.safetensors:100%"
}
},
"b953419300604b8e86fc0ad003fdfd2f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"bdf8b693821344fc97918e6cbc31c8bf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"be3e9bf271f04eb0b119659e1af3a0ea": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c4598300a77b4667b1117f9499f5ccb7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"c4a2c88326d14fbca87cfde073755a2e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"c52e0f34892b4daa84c1bf61500ac399": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"c779e80c50ba4434bfa1d326c5cc9b0f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ca81071ab07446df96795a482ce0c630": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cc20ffcf0c1a4656945959bf457dfd84": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"cc3da88e93c4499993b7bbb7d3064326": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"d160986df978416c9ad91d1e10fc90fc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"d49791082a304ade95c185c79fae1f41": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_00148825ce0248b7a23eb28e3eca6749",
"max": 4999802720,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_f1a9b0c2431640298a6c1b258298b12d",
"value": 4999802720
}
},
"d598f094c3ce4daeab19fac8094cba7e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_0afc2d23514b45c9890b5d2ee4e6fa0b",
"IPY_MODEL_3da5d38bf3314d3eaa7cedebae41c076",
"IPY_MODEL_55e6b727a4594078beb3853cc1891308"
],
"layout": "IPY_MODEL_f17fa78263414ef8b414c7bf3ac03192"
}
},
"d5b4bb4891ec4e44be46e9815c7e10dc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_f55b59efcefa4ad5955d082f4bf7c637",
"max": 4976698672,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_1b02e0c7d1604b1c87a327c4c4f8b0e7",
"value": 4976698672
}
},
"d74186bb74d142dfb683fa347b6990f7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"dc5d555099f64a998514ebde90eeb6df": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_3d519ce3562c4e249bf392c7f43d04c0",
"placeholder": "",
"style": "IPY_MODEL_cc20ffcf0c1a4656945959bf457dfd84",
"value": "1.17G/1.17G[00:03&lt;00:00,328MB/s]"
}
},
"dffa208978f34e6a9aae94ecda92fe67": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_b8a98f163ebd4ac89af08a49c0881c23",
"IPY_MODEL_f0d9febe1a634a0ba7e8e50fa104dcc2",
"IPY_MODEL_e23870f0c7ff40cc8fa6a1e862a4af99"
],
"layout": "IPY_MODEL_87da9905a0534c26ad0712ad426ca930"
}
},
"e0550cab24c7492787af40dc4b8576bf": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"e1e4125eac004bae92dc1f22f673bf0e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_81458e7953a349cfafccaa213b370406",
"placeholder": "",
"style": "IPY_MODEL_a3dc9dfadae642b4a873705596739468",
"value": "model-00001-of-00004.safetensors:100%"
}
},
"e23870f0c7ff40cc8fa6a1e862a4af99": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5e97f7c2e8f5453dafcdad0552060e60",
"placeholder": "",
"style": "IPY_MODEL_4b3e7b8774df4b458bb6c6146fe3226d",
"value": "4.92G/4.92G[00:20&lt;00:00,317MB/s]"
}
},
"e7602abc26714ee890a0cf5c0c7b67e1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_6c857e69d5204cd3b7c3bf426993ad1f",
"max": 1168138808,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_2145e47428f1446fba3e62b3cde0a7f5",
"value": 1168138808
}
},
"e805bb6dfee34dab8870f4618d8bffdb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e8a4b441281b4038bb0204d093411f68": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_77606cd2fe1b4d33a91ede944bb1dec0",
"placeholder": "",
"style": "IPY_MODEL_f1ba439c26d64c90af2f162c74348405",
"value": "4.98G/4.98G[00:16&lt;00:00,296MB/s]"
}
},
"e8b187b40ec14db3af17a380830a35bf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e94ca32eaa9f4714a3b05a5fdf24d02b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e9aba3d53b4d45c485a7aad649c7b465": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7c6658cfff1a4d27af3de148184f77d9",
"max": 4976698672,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_7266a729edfb4a44b5b1c67dc79be146",
"value": 4976698672
}
},
"ea0128909a9d4801ba312a876b0cf183": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"eb94612785e64552aea8674dc8647a93": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ebe04aeaaac042aaaa0885992e45793d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ed28e180d94a4b7aa548581612e31232": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_ff4338faded5494da1ccb660e1c441ed",
"IPY_MODEL_b46a08cf4929422eb0f76d8d9af11249",
"IPY_MODEL_f049eb4a50f54c34912ca959d2eaf353"
],
"layout": "IPY_MODEL_80dfd3e80ceb444a83ec1fd65f9af80e"
}
},
"ef93a2f58cc54373941f43658bb808cf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f049eb4a50f54c34912ca959d2eaf353": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_f0ab5a46cbb0444c88ed137d8a95002b",
"placeholder": "",
"style": "IPY_MODEL_f8f28ac0e149428f9fef42373c6a87d0",
"value": "1.17G/1.17G[00:03&lt;00:00,307MB/s]"
}
},
"f0ab5a46cbb0444c88ed137d8a95002b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f0d9febe1a634a0ba7e8e50fa104dcc2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ea0128909a9d4801ba312a876b0cf183",
"max": 4915916176,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_d160986df978416c9ad91d1e10fc90fc",
"value": 4915916176
}
},
"f114549fe8ce49638a791ca2fecb2d89": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f17fa78263414ef8b414c7bf3ac03192": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f1865ed0fbcc40eeabdca90a43d00069": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f1a12d7929db4309b9881853135359fc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_76dbab4873f342019c5d7624ae2c9775",
"placeholder": "",
"style": "IPY_MODEL_3cea4b431147441a8d9bd872811d5974",
"value": "4.98G/4.98G[00:16&lt;00:00,309MB/s]"
}
},
"f1a9b0c2431640298a6c1b258298b12d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"f1ba439c26d64c90af2f162c74348405": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f3788acce34f4956b0727b58d0cf38c6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_6022a9426683420690d9b41a0ca4f870",
"IPY_MODEL_e9aba3d53b4d45c485a7aad649c7b465",
"IPY_MODEL_f1a12d7929db4309b9881853135359fc"
],
"layout": "IPY_MODEL_58c9dec75a3346b1b787f88dd510d254"
}
},
"f55b59efcefa4ad5955d082f4bf7c637": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f5fa00d96c4c49e48e1806d23a5b8570": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_5798e5118430439fb1f6bf29e1bafe58",
"max": 4999802720,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_357f367cf74146b8825be371acd51d06",
"value": 4999802720
}
},
"f8f28ac0e149428f9fef42373c6a87d0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f9373112649945e3b446c3e1ec274dc1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e805bb6dfee34dab8870f4618d8bffdb",
"placeholder": "",
"style": "IPY_MODEL_be3e9bf271f04eb0b119659e1af3a0ea",
"value": "model-00002-of-00004.safetensors:100%"
}
},
"fea1e2327d2944859af3d91c216b9008": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ff4338faded5494da1ccb660e1c441ed": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_519147a10b984befbd0f255f78c1f66a",
"placeholder": "",
"style": "IPY_MODEL_562e82438dbe41b793ff488b8447c5bf",
"value": "model-00004-of-00004.safetensors:100%"
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}