Daniel Kleine 14c054d36c
added pkg fixes (#676)
Co-authored-by: Sebastian Raschka <mail@sebastianraschka.com>
2025-06-21 16:07:50 -05:00

249 lines
7.8 KiB
Python

# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
from llms_from_scratch.ch04 import generate_text_simple
from llms_from_scratch.llama3 import (
compute_rope_params,
apply_rope,
LLAMA32_CONFIG_1B,
GroupedQueryAttention,
GroupedQueryAttentionFast,
Llama3Model,
)
from llms_from_scratch.kv_cache.llama3 import Llama3Model as Llama3ModelKV
from llms_from_scratch.kv_cache.generate import generate_text_simple as generate_text_simple_cached
import importlib
import os
import pytest
import tiktoken
import torch
class LitGPTRMSNorm(torch.nn.Module):
"""Root Mean Square Layer Normalization.
From https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py
Apache License 2.0-Clause License: https://github.com/Lightning-AI/litgpt/blob/main/LICENSE
Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
"""
def __init__(self, size: int, dim: int = -1, eps: float = 1e-6, add_unit_offset: bool = False) -> None:
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(size))
self.eps = eps
self.dim = dim
self.add_unit_offset = add_unit_offset
def forward(self, x: torch.Tensor) -> torch.Tensor:
dtype = x.dtype
x = x.float()
# NOTE: the original RMSNorm paper implementation is not equivalent
norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
x_normed = x * torch.rsqrt(norm_x + self.eps)
weight = (1 + self.weight) if self.add_unit_offset else self.weight
return (x_normed * weight.float()).to(dtype=dtype)
def reset_parameters(self) -> None:
torch.nn.init.ones_(self.weight)
transformers_installed = importlib.util.find_spec("transformers") is not None
@pytest.mark.skipif(not transformers_installed, reason="transformers not installed")
def test_rope():
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding, apply_rotary_pos_emb
# Settings
batch_size = 1
context_len = 8192
num_heads = 4
head_dim = 16
rope_theta = 500_000
rope_config = {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
}
# Instantiate RoPE parameters
cos, sin = compute_rope_params(
head_dim=head_dim,
theta_base=rope_theta,
context_length=context_len,
freq_config=rope_config,
)
# Dummy query and key tensors
torch.manual_seed(123)
queries = torch.randn(batch_size, num_heads, context_len, head_dim)
keys = torch.randn(batch_size, num_heads, context_len, head_dim)
# Apply rotary position embeddings
queries_rot = apply_rope(queries, cos, sin)
keys_rot = apply_rope(keys, cos, sin)
# Generate reference RoPE via HF
hf_rope_params = {
"factor": 8.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_max_position_embeddings": 8192,
"rope_type": "llama3"
}
class RoPEConfig:
rope_type = "llama3"
rope_scaling = hf_rope_params
factor = 1.0
dim: int = head_dim
rope_theta = 500_000
max_position_embeddings: int = 8192
hidden_size = head_dim * num_heads
num_attention_heads = num_heads
config = RoPEConfig()
rot_emb = LlamaRotaryEmbedding(config=config)
position_ids = torch.arange(context_len, dtype=torch.long).unsqueeze(0)
ref_cos, ref_sin = rot_emb(queries, position_ids)
ref_queries_rot, ref_keys_rot = apply_rotary_pos_emb(queries, keys, ref_cos, ref_sin)
torch.testing.assert_close(sin, ref_sin.squeeze(0))
torch.testing.assert_close(cos, ref_cos.squeeze(0))
torch.testing.assert_close(keys_rot, ref_keys_rot)
torch.testing.assert_close(queries_rot, ref_queries_rot)
GPT_CONFIG_124M = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"emb_dim": 768, # Embedding dimension
"n_heads": 12, # Number of attention heads
"n_layers": 12, # Number of layers
"drop_rate": 0.1, # Dropout rate
"qkv_bias": False # Query-Key-Value bias
}
def test_grouped_query_attention_equivalence():
torch.manual_seed(42)
b, t, d_in, d_out, num_heads, num_kv_groups = 2, 8, 32, 64, 4, 2
x = torch.randn(b, t, d_in)
cos, sin = compute_rope_params(
head_dim=d_out // num_heads,
theta_base=50_000,
context_length=t,
freq_config={
"factor": 32.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": t,
}
)
# Causal mask for the slow version
mask = torch.triu(torch.ones(t, t, dtype=torch.bool), diagonal=1)
attn1 = GroupedQueryAttention(d_in, d_out, num_heads, num_kv_groups)
attn2 = GroupedQueryAttentionFast(d_in, d_out, num_heads, num_kv_groups)
# Copy weights to make both models identical
attn2.load_state_dict(attn1.state_dict())
# Run both
y1 = attn1(x, mask, cos, sin)
y2 = attn2(x, cos, sin)
# Compare outputs
max_diff = (y1 - y2).abs().max().item()
print(f"Max difference between slow and fast outputs: {max_diff:.4e}")
assert torch.allclose(y1, y2, atol=1e-4)
@pytest.fixture(scope="session")
def llama3_weights_path(tmp_path_factory):
"""Creates and saves a deterministic Llama3 model for testing."""
path = tmp_path_factory.mktemp("models") / "llama3_test_weights.pt"
if not path.exists():
torch.manual_seed(123)
model = Llama3Model(LLAMA32_CONFIG_1B)
torch.save(model.state_dict(), path)
return path
@pytest.mark.skipif(
os.getenv("GITHUB_ACTIONS") == "true",
reason="Skipping in GitHub Actions due to compute or memory constraints"
)
@pytest.mark.parametrize("ModelClass", [Llama3Model, Llama3ModelKV])
@pytest.mark.parametrize("generate_fn", [generate_text_simple, generate_text_simple_cached])
def test_gpt_model_variants(ModelClass, generate_fn, llama3_weights_path):
# Skip incompatible combinations
if generate_fn is generate_text_simple and getattr(ModelClass, "reset_kv_cache", False):
return
if generate_fn is generate_text_simple_cached and not getattr(ModelClass, "reset_kv_cache", False):
return
torch.manual_seed(123)
model = ModelClass(LLAMA32_CONFIG_1B)
model.load_state_dict(torch.load(llama3_weights_path, weights_only=True))
model.eval()
start_context = "Llamas eat"
tokenizer = tiktoken.get_encoding("gpt2")
encoded = tokenizer.encode(start_context)
encoded_tensor = torch.tensor(encoded).unsqueeze(0)
print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}")
print("\nInput text:", start_context)
print("Encoded input text:", encoded)
print("encoded_tensor.shape:", encoded_tensor.shape)
out = generate_fn(
model=model,
idx=encoded_tensor,
max_new_tokens=5,
context_size=LLAMA32_CONFIG_1B["context_length"]
)
print("Encoded output text:", out)
expect = torch.tensor([
[43, 2543, 292, 4483, 100383, 8113, 76873, 42175, 72641]
])
assert torch.equal(expect, out)
def test_rmsnorm_equivalence():
torch.manual_seed(42)
hidden_size = 64
batch_size = 8
seq_len = 16
rms_norm = torch.nn.RMSNorm(hidden_size, eps=1e-6)
lit_norm = LitGPTRMSNorm(hidden_size)
# Sync weights
with torch.no_grad():
lit_norm.weight.copy_(lit_norm.weight)
x = torch.randn(batch_size, seq_len, hidden_size)
out1 = rms_norm(x)
out2 = lit_norm(x)
torch.testing.assert_close(out1, out2, atol=1e-5, rtol=1e-5)