mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-30 17:29:59 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			199 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			199 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| 
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| 
 | |
| 
 | |
| class SelfAttention_v1(nn.Module):
 | |
| 
 | |
|     def __init__(self, d_in, d_out):
 | |
|         super().__init__()
 | |
|         self.W_query = nn.Parameter(torch.rand(d_in, d_out))
 | |
|         self.W_key = nn.Parameter(torch.rand(d_in, d_out))
 | |
|         self.W_value = nn.Parameter(torch.rand(d_in, d_out))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         keys = x @ self.W_key
 | |
|         queries = x @ self.W_query
 | |
|         values = x @ self.W_value
 | |
| 
 | |
|         attn_scores = queries @ keys.T # omega
 | |
|         attn_weights = torch.softmax(
 | |
|             attn_scores / keys.shape[-1]**0.5, dim=-1
 | |
|         )
 | |
| 
 | |
|         context_vec = attn_weights @ values
 | |
|         return context_vec
 | |
| 
 | |
| 
 | |
| class SelfAttention_v2(nn.Module):
 | |
| 
 | |
|     def __init__(self, d_in, d_out, qkv_bias=False):
 | |
|         super().__init__()
 | |
|         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         keys = self.W_key(x)
 | |
|         queries = self.W_query(x)
 | |
|         values = self.W_value(x)
 | |
| 
 | |
|         attn_scores = queries @ keys.T
 | |
|         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
 | |
| 
 | |
|         context_vec = attn_weights @ values
 | |
|         return context_vec
 | |
| 
 | |
| 
 | |
| class CausalAttention(nn.Module):
 | |
| 
 | |
|     def __init__(self, d_in, d_out, context_length,
 | |
|                  dropout, qkv_bias=False):
 | |
|         super().__init__()
 | |
|         self.d_out = d_out
 | |
|         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.dropout = nn.Dropout(dropout)  # New
 | |
|         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) # New
 | |
| 
 | |
|     def forward(self, x):
 | |
|         b, num_tokens, d_in = x.shape  # New batch dimension b
 | |
|         # For inputs where `num_tokens` exceeds `context_length`, this will result in errors
 | |
|         # in the mask creation further below.
 | |
|         # In practice, this is not a problem since the LLM (chapters 4-7) ensures that inputs
 | |
|         # do not exceed `context_length` before reaching this forward method.
 | |
|         keys = self.W_key(x)
 | |
|         queries = self.W_query(x)
 | |
|         values = self.W_value(x)
 | |
| 
 | |
|         attn_scores = queries @ keys.transpose(1, 2)  # Changed transpose
 | |
|         attn_scores.masked_fill_(  # New, _ ops are in-place
 | |
|             self.mask.bool()[:num_tokens, :num_tokens], -torch.inf)  # `:num_tokens` to account for cases where the number of tokens in the batch is smaller than the supported context_size
 | |
|         attn_weights = torch.softmax(
 | |
|             attn_scores / keys.shape[-1]**0.5, dim=-1
 | |
|         )
 | |
|         attn_weights = self.dropout(attn_weights)  # New
 | |
| 
 | |
|         context_vec = attn_weights @ values
 | |
|         return context_vec
 | |
| 
 | |
| 
 | |
| class MultiHeadAttentionWrapper(nn.Module):
 | |
|     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
 | |
|         super().__init__()
 | |
|         self.heads = nn.ModuleList(
 | |
|             [CausalAttention(d_in, d_out, context_length, dropout, qkv_bias)
 | |
|              for _ in range(num_heads)]
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         return torch.cat([head(x) for head in self.heads], dim=-1)
 | |
| 
 | |
| 
 | |
| class MultiHeadAttention(nn.Module):
 | |
|     def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
 | |
|         super().__init__()
 | |
|         assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
 | |
| 
 | |
|         self.d_out = d_out
 | |
|         self.num_heads = num_heads
 | |
|         self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim
 | |
| 
 | |
|         self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
 | |
|         self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
 | |
|         self.dropout = nn.Dropout(dropout)
 | |
|         self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
 | |
| 
 | |
|     def forward(self, x):
 | |
|         b, num_tokens, d_in = x.shape
 | |
| 
 | |
|         keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
 | |
|         queries = self.W_query(x)
 | |
|         values = self.W_value(x)
 | |
| 
 | |
|         # We implicitly split the matrix by adding a `num_heads` dimension
 | |
|         # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
 | |
|         keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         values = values.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
|         queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
 | |
| 
 | |
|         # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
 | |
|         keys = keys.transpose(1, 2)
 | |
|         queries = queries.transpose(1, 2)
 | |
|         values = values.transpose(1, 2)
 | |
| 
 | |
|         # Compute scaled dot-product attention (aka self-attention) with a causal mask
 | |
|         attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head
 | |
| 
 | |
|         # Original mask truncated to the number of tokens and converted to boolean
 | |
|         mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
 | |
| 
 | |
|         # Use the mask to fill attention scores
 | |
|         attn_scores.masked_fill_(mask_bool, -torch.inf)
 | |
| 
 | |
|         attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
 | |
|         attn_weights = self.dropout(attn_weights)
 | |
| 
 | |
|         # Shape: (b, num_tokens, num_heads, head_dim)
 | |
|         context_vec = (attn_weights @ values).transpose(1, 2)
 | |
| 
 | |
|         # Combine heads, where self.d_out = self.num_heads * self.head_dim
 | |
|         context_vec = context_vec.reshape(b, num_tokens, self.d_out)
 | |
|         context_vec = self.out_proj(context_vec)  # optional projection
 | |
| 
 | |
|         return context_vec
 | |
| 
 | |
| 
 | |
| ######################
 | |
| # Bonus
 | |
| ######################
 | |
| 
 | |
| 
 | |
| class PyTorchMultiHeadAttention(nn.Module):
 | |
|     def __init__(self, d_in, d_out, num_heads, dropout=0.0, qkv_bias=False):
 | |
|         super().__init__()
 | |
| 
 | |
|         assert d_out % num_heads == 0, "embed_dim is indivisible by num_heads"
 | |
| 
 | |
|         self.num_heads = num_heads
 | |
|         self.head_dim = d_out // num_heads
 | |
|         self.d_out = d_out
 | |
| 
 | |
|         self.qkv = nn.Linear(d_in, 3 * d_out, bias=qkv_bias)
 | |
|         self.proj = nn.Linear(d_out, d_out)
 | |
|         self.dropout = dropout
 | |
| 
 | |
|     def forward(self, x):
 | |
|         batch_size, num_tokens, embed_dim = x.shape
 | |
| 
 | |
|         # (b, num_tokens, embed_dim) --> (b, num_tokens, 3 * embed_dim)
 | |
|         qkv = self.qkv(x)
 | |
| 
 | |
|         # (b, num_tokens, 3 * embed_dim) --> (b, num_tokens, 3, num_heads, head_dim)
 | |
|         qkv = qkv.view(batch_size, num_tokens, 3, self.num_heads, self.head_dim)
 | |
| 
 | |
|         # (b, num_tokens, 3, num_heads, head_dim) --> (3, b, num_heads, num_tokens, head_dim)
 | |
|         qkv = qkv.permute(2, 0, 3, 1, 4)
 | |
| 
 | |
|         # (3, b, num_heads, num_tokens, head_dim) -> 3 times (b, num_heads, num_tokens, head_dim)
 | |
|         queries, keys, values = qkv
 | |
| 
 | |
|         use_dropout = 0. if not self.training else self.dropout
 | |
| 
 | |
|         context_vec = nn.functional.scaled_dot_product_attention(
 | |
|             queries, keys, values, attn_mask=None, dropout_p=use_dropout, is_causal=True)
 | |
| 
 | |
|         # Combine heads, where self.d_out = self.num_heads * self.head_dim
 | |
|         context_vec = context_vec.transpose(1, 2).contiguous().view(batch_size, num_tokens, self.d_out)
 | |
| 
 | |
|         context_vec = self.proj(context_vec)
 | |
| 
 | |
|         return context_vec
 | 
