mirror of
https://github.com/rasbt/LLMs-from-scratch.git
synced 2025-08-09 09:12:51 +00:00

* Add LoRA experiments * Update ch06/02_bonus_additional-experiments/additional-experiments.py
487 lines
17 KiB
Python
487 lines
17 KiB
Python
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
|
# Source for "Build a Large Language Model From Scratch"
|
|
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
|
|
# Code: https://github.com/rasbt/LLMs-from-scratch
|
|
|
|
import argparse
|
|
import os
|
|
from pathlib import Path
|
|
import time
|
|
import urllib.request
|
|
import zipfile
|
|
|
|
import pandas as pd
|
|
import tiktoken
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data import Dataset
|
|
|
|
from gpt_download import download_and_load_gpt2
|
|
from previous_chapters import GPTModel, load_weights_into_gpt
|
|
|
|
|
|
class LoRALayer(torch.nn.Module):
|
|
def __init__(self, in_dim, out_dim, rank, alpha):
|
|
super().__init__()
|
|
std_dev = 1 / torch.sqrt(torch.tensor(rank).float())
|
|
self.A = torch.nn.Parameter(torch.randn(in_dim, rank) * std_dev)
|
|
self.B = torch.nn.Parameter(torch.zeros(rank, out_dim))
|
|
self.alpha = alpha
|
|
|
|
def forward(self, x):
|
|
x = self.alpha * (x @ self.A @ self.B)
|
|
return x
|
|
|
|
|
|
class LinearWithLoRA(torch.nn.Module):
|
|
def __init__(self, linear, rank, alpha):
|
|
super().__init__()
|
|
self.linear = linear
|
|
self.lora = LoRALayer(
|
|
linear.in_features, linear.out_features, rank, alpha
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x) + self.lora(x)
|
|
|
|
|
|
class SpamDataset(Dataset):
|
|
def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
|
|
self.data = pd.read_csv(csv_file)
|
|
self.max_length = max_length if max_length is not None else self._longest_encoded_length(tokenizer)
|
|
|
|
# Pre-tokenize texts
|
|
self.encoded_texts = [
|
|
tokenizer.encode(text)[:self.max_length]
|
|
for text in self.data["Text"]
|
|
]
|
|
# Pad sequences to the longest sequence
|
|
self.encoded_texts = [
|
|
et + [pad_token_id] * (self.max_length - len(et))
|
|
for et in self.encoded_texts
|
|
]
|
|
|
|
def __getitem__(self, index):
|
|
encoded = self.encoded_texts[index]
|
|
label = self.data.iloc[index]["Label"]
|
|
return torch.tensor(encoded, dtype=torch.long), torch.tensor(label, dtype=torch.long)
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|
|
|
|
def _longest_encoded_length(self, tokenizer):
|
|
max_length = 0
|
|
for text in self.data["Text"]:
|
|
encoded_length = len(tokenizer.encode(text))
|
|
if encoded_length > max_length:
|
|
max_length = encoded_length
|
|
return max_length
|
|
|
|
|
|
def download_and_unzip(url, zip_path, extract_to, new_file_path):
|
|
if new_file_path.exists():
|
|
print(f"{new_file_path} already exists. Skipping download and extraction.")
|
|
return
|
|
|
|
# Downloading the file
|
|
with urllib.request.urlopen(url) as response:
|
|
with open(zip_path, "wb") as out_file:
|
|
out_file.write(response.read())
|
|
|
|
# Unzipping the file
|
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
zip_ref.extractall(extract_to)
|
|
|
|
# Renaming the file to indicate its format
|
|
original_file = Path(extract_to) / "SMSSpamCollection"
|
|
os.rename(original_file, new_file_path)
|
|
print(f"File downloaded and saved as {new_file_path}")
|
|
|
|
|
|
def random_split(df, train_frac, validation_frac):
|
|
# Shuffle the entire DataFrame
|
|
df = df.sample(frac=1, random_state=123).reset_index(drop=True)
|
|
|
|
# Calculate split indices
|
|
train_end = int(len(df) * train_frac)
|
|
validation_end = train_end + int(len(df) * validation_frac)
|
|
|
|
# Split the DataFrame
|
|
train_df = df[:train_end]
|
|
validation_df = df[train_end:validation_end]
|
|
test_df = df[validation_end:]
|
|
|
|
return train_df, validation_df, test_df
|
|
|
|
|
|
def create_dataset_csvs(data_file_path):
|
|
df = pd.read_csv(new_file_path, sep="\t", header=None, names=["Label", "Text"])
|
|
|
|
# Create balanced dataset
|
|
n_spam = df[df["Label"] == "spam"].shape[0]
|
|
ham_sampled = df[df["Label"] == "ham"].sample(n_spam, random_state=123)
|
|
balanced_df = pd.concat([ham_sampled, df[df["Label"] == "spam"]])
|
|
balanced_df = balanced_df.sample(frac=1, random_state=123).reset_index(drop=True)
|
|
balanced_df["Label"] = balanced_df["Label"].map({"ham": 0, "spam": 1})
|
|
|
|
# Sample and save csv files
|
|
train_df, validation_df, test_df = random_split(balanced_df, 0.7, 0.1)
|
|
train_df.to_csv("train.csv", index=None)
|
|
validation_df.to_csv("validation.csv", index=None)
|
|
test_df.to_csv("test.csv", index=None)
|
|
|
|
|
|
def instantiate_model(choose_model, load_weights):
|
|
|
|
BASE_CONFIG = {
|
|
"vocab_size": 50257, # Vocabulary size
|
|
"context_length": 1024, # Context length
|
|
"drop_rate": 0.0, # Dropout rate
|
|
"qkv_bias": True # Query-key-value bias
|
|
}
|
|
|
|
model_configs = {
|
|
"gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
|
|
"gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
|
|
"gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
|
|
"gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
|
|
}
|
|
|
|
BASE_CONFIG.update(model_configs[choose_model])
|
|
|
|
if not load_weights:
|
|
torch.manual_seed(123)
|
|
model = GPTModel(BASE_CONFIG)
|
|
|
|
if load_weights:
|
|
model_size = choose_model.split(" ")[-1].lstrip("(").rstrip(")")
|
|
settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
|
|
load_weights_into_gpt(model, params)
|
|
|
|
model.eval()
|
|
return model
|
|
|
|
|
|
def calc_loss_batch(input_batch, target_batch, model, device, trainable_token=-1):
|
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
|
logits = model(input_batch)[:, trainable_token, :] # Logits of last output token
|
|
loss = torch.nn.functional.cross_entropy(logits, target_batch)
|
|
return loss
|
|
|
|
|
|
def calc_loss_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
|
|
total_loss = 0.
|
|
if len(data_loader) == 0:
|
|
return float("nan")
|
|
elif num_batches is None:
|
|
num_batches = len(data_loader)
|
|
else:
|
|
# Reduce the number of batches to match the total number of batches in the data loader
|
|
# if num_batches exceeds the number of batches in the data loader
|
|
num_batches = min(num_batches, len(data_loader))
|
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
|
if i < num_batches:
|
|
loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
|
|
total_loss += loss.item()
|
|
else:
|
|
break
|
|
return total_loss / num_batches
|
|
|
|
|
|
@torch.no_grad() # Disable gradient tracking for efficiency
|
|
def calc_accuracy_loader(data_loader, model, device, num_batches=None, trainable_token=-1):
|
|
model.eval()
|
|
correct_predictions, num_examples = 0, 0
|
|
|
|
if num_batches is None:
|
|
num_batches = len(data_loader)
|
|
else:
|
|
num_batches = min(num_batches, len(data_loader))
|
|
for i, (input_batch, target_batch) in enumerate(data_loader):
|
|
if i < num_batches:
|
|
input_batch, target_batch = input_batch.to(device), target_batch.to(device)
|
|
logits = model(input_batch)[:, trainable_token, :] # Logits of last output token
|
|
predicted_labels = torch.argmax(logits, dim=-1)
|
|
|
|
num_examples += predicted_labels.shape[0]
|
|
correct_predictions += (predicted_labels == target_batch).sum().item()
|
|
else:
|
|
break
|
|
return correct_predictions / num_examples
|
|
|
|
|
|
def evaluate_model(model, train_loader, val_loader, device, eval_iter, trainable_token=-1):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
|
|
val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
|
|
model.train()
|
|
return train_loss, val_loss
|
|
|
|
|
|
def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
|
|
eval_freq, eval_iter, tokenizer, max_steps=None, trainable_token=-1):
|
|
# Initialize lists to track losses and tokens seen
|
|
train_losses, val_losses, train_accs, val_accs = [], [], [], []
|
|
examples_seen, global_step = 0, -1
|
|
|
|
# Main training loop
|
|
for epoch in range(num_epochs):
|
|
model.train() # Set model to training mode
|
|
|
|
for input_batch, target_batch in train_loader:
|
|
optimizer.zero_grad() # Reset loss gradients from previous epoch
|
|
loss = calc_loss_batch(input_batch, target_batch, model, device, trainable_token=trainable_token)
|
|
loss.backward() # Calculate loss gradients
|
|
optimizer.step() # Update model weights using loss gradients
|
|
examples_seen += input_batch.shape[0] # New: track examples instead of tokens
|
|
global_step += 1
|
|
|
|
# Optional evaluation step
|
|
if global_step % eval_freq == 0:
|
|
train_loss, val_loss = evaluate_model(
|
|
model, train_loader, val_loader, device, eval_iter, trainable_token=trainable_token)
|
|
train_losses.append(train_loss)
|
|
val_losses.append(val_loss)
|
|
print(f"Ep {epoch+1} (Step {global_step:06d}): "
|
|
f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
|
|
|
|
if max_steps is not None and global_step > max_steps:
|
|
break
|
|
|
|
# New: Calculate accuracy after each epoch
|
|
train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
|
|
val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter, trainable_token=trainable_token)
|
|
print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
|
|
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
|
train_accs.append(train_accuracy)
|
|
val_accs.append(val_accuracy)
|
|
|
|
if max_steps is not None and global_step > max_steps:
|
|
break
|
|
|
|
return train_losses, val_losses, train_accs, val_accs, examples_seen
|
|
|
|
|
|
def replace_linear_with_lora(model, rank, alpha):
|
|
for name, module in model.named_children():
|
|
if isinstance(module, torch.nn.Linear):
|
|
# Replace the Linear layer with LinearWithLoRA
|
|
setattr(model, name, LinearWithLoRA(module, rank, alpha))
|
|
else:
|
|
# Recursively apply the same function to child modules
|
|
replace_linear_with_lora(module, rank, alpha)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model_size",
|
|
type=str,
|
|
default="gpt2-small (124M)",
|
|
help=(
|
|
"Which GPT model to use. Options: 'gpt2-small (124M)', 'gpt2-medium (355M)',"
|
|
" 'gpt2-large (774M)', 'gpt2-xl (1558M)'."
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"--weights",
|
|
type=str,
|
|
default="pretrained",
|
|
help=(
|
|
"Whether to use 'pretrained' or 'random' weights."
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"--trainable_layers",
|
|
type=str,
|
|
default="last_block",
|
|
help=(
|
|
"Which layers to train. Options: 'all', 'last_block', 'last_layer', 'lora'."
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"--trainable_token",
|
|
type=str,
|
|
default="last",
|
|
help=(
|
|
"Which token to train. Options: 'first', 'last'."
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"--context_length",
|
|
type=str,
|
|
default="longest_training_example",
|
|
help=(
|
|
"The context length of the data inputs."
|
|
"Options: 'longest_training_example', 'model_context_length' or integer value."
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"--lora_rank",
|
|
type=int,
|
|
default=8,
|
|
help=(
|
|
"The LoRA rank when choosing `--trainable_layers lora`"
|
|
)
|
|
)
|
|
parser.add_argument(
|
|
"--lora_alpha",
|
|
type=int,
|
|
default=8,
|
|
help=(
|
|
"The LoRA alpha value when choosing `--trainable_layers lora`"
|
|
)
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.trainable_token == "first":
|
|
args.trainable_token = 0
|
|
elif args.trainable_token == "last":
|
|
args.trainable_token = -1
|
|
else:
|
|
raise ValueError("Invalid --trainable_token argument")
|
|
|
|
###############################
|
|
# Load model
|
|
###############################
|
|
|
|
if args.weights == "pretrained":
|
|
load_weights = True
|
|
elif args.weights == "random":
|
|
load_weights = False
|
|
else:
|
|
raise ValueError("Invalid --weights argument.")
|
|
|
|
model = instantiate_model(args.model_size, load_weights)
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
|
|
if args.model_size == "gpt2-small (124M)":
|
|
in_features = 768
|
|
elif args.model_size == "gpt2-medium (355M)":
|
|
in_features = 1024
|
|
elif args.model_size == "gpt2-large (774M)":
|
|
in_features = 1280
|
|
elif args.model_size == "gpt2-xl (1558M)":
|
|
in_features = 1600
|
|
else:
|
|
raise ValueError("Invalid --model_size argument")
|
|
|
|
torch.manual_seed(123)
|
|
model.out_head = torch.nn.Linear(in_features=in_features, out_features=2)
|
|
|
|
if args.trainable_layers == "last_layer":
|
|
pass
|
|
elif args.trainable_layers == "last_block":
|
|
for param in model.trf_blocks[-1].parameters():
|
|
param.requires_grad = True
|
|
for param in model.final_norm.parameters():
|
|
param.requires_grad = True
|
|
elif args.trainable_layers == "all":
|
|
for param in model.parameters():
|
|
param.requires_grad = True
|
|
elif args.trainable_layers == "lora":
|
|
replace_linear_with_lora(model, rank=args.lora_rank, alpha=args.lora_alpha)
|
|
else:
|
|
raise ValueError("Invalid --trainable_layers argument.")
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
|
|
###############################
|
|
# Instantiate dataloaders
|
|
###############################
|
|
|
|
url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
|
|
zip_path = "sms_spam_collection.zip"
|
|
extract_to = "sms_spam_collection"
|
|
new_file_path = Path(extract_to) / "SMSSpamCollection.tsv"
|
|
|
|
base_path = Path(".")
|
|
file_names = ["train.csv", "validation.csv", "test.csv"]
|
|
all_exist = all((base_path / file_name).exists() for file_name in file_names)
|
|
|
|
if not all_exist:
|
|
download_and_unzip(url, zip_path, extract_to, new_file_path)
|
|
create_dataset_csvs(new_file_path)
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
train_dataset = None
|
|
if args.context_length == "model_context_length":
|
|
max_length = model.pos_emb.weight.shape[0]
|
|
elif args.context_length == "longest_training_example":
|
|
train_dataset = SpamDataset(base_path / "train.csv", max_length=None, tokenizer=tokenizer)
|
|
max_length = train_dataset.max_length
|
|
else:
|
|
try:
|
|
max_length = int(args.context_length)
|
|
except ValueError:
|
|
raise ValueError("Invalid --context_length argument")
|
|
|
|
if train_dataset is None:
|
|
train_dataset = SpamDataset(base_path / "train.csv", max_length=max_length, tokenizer=tokenizer)
|
|
val_dataset = SpamDataset(base_path / "validation.csv", max_length=max_length, tokenizer=tokenizer)
|
|
test_dataset = SpamDataset(base_path / "test.csv", max_length=max_length, tokenizer=tokenizer)
|
|
|
|
tokenizer = tiktoken.get_encoding("gpt2")
|
|
|
|
num_workers = 0
|
|
batch_size = 8
|
|
|
|
train_loader = DataLoader(
|
|
dataset=train_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=num_workers,
|
|
drop_last=True,
|
|
)
|
|
|
|
val_loader = DataLoader(
|
|
dataset=val_dataset,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
drop_last=False,
|
|
)
|
|
|
|
test_loader = DataLoader(
|
|
dataset=test_dataset,
|
|
batch_size=batch_size,
|
|
num_workers=num_workers,
|
|
drop_last=False,
|
|
)
|
|
|
|
###############################
|
|
# Train model
|
|
###############################
|
|
|
|
start_time = time.time()
|
|
torch.manual_seed(123)
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.1)
|
|
|
|
num_epochs = 5
|
|
train_losses, val_losses, train_accs, val_accs, examples_seen = train_classifier_simple(
|
|
model, train_loader, val_loader, optimizer, device,
|
|
num_epochs=num_epochs, eval_freq=50, eval_iter=5,
|
|
tokenizer=tokenizer, max_steps=None, trainable_token=args.trainable_token
|
|
)
|
|
|
|
end_time = time.time()
|
|
execution_time_minutes = (end_time - start_time) / 60
|
|
print(f"Training completed in {execution_time_minutes:.2f} minutes.")
|
|
|
|
###############################
|
|
# Evaluate model
|
|
###############################
|
|
|
|
train_accuracy = calc_accuracy_loader(train_loader, model, device, trainable_token=args.trainable_token)
|
|
val_accuracy = calc_accuracy_loader(val_loader, model, device, trainable_token=args.trainable_token)
|
|
test_accuracy = calc_accuracy_loader(test_loader, model, device, trainable_token=args.trainable_token)
|
|
|
|
print(f"Training accuracy: {train_accuracy*100:.2f}%")
|
|
print(f"Validation accuracy: {val_accuracy*100:.2f}%")
|
|
print(f"Test accuracy: {test_accuracy*100:.2f}%")
|