mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-10-31 09:50:23 +00:00 
			
		
		
		
	 790d0808b2
			
		
	
	
		790d0808b2
		
	
	
	
	
		
			
			* Organized setup instructions * update tets * link checker action * raise error upon broken link * fix links * fix links * delete duplicated paragraph
		
			
				
	
	
		
			183 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | |
| # Source for "Build a Large Language Model From Scratch"
 | |
| #   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | |
| # Code: https://github.com/rasbt/LLMs-from-scratch
 | |
| 
 | |
| # Appendix A: Introduction to PyTorch (Part 3)
 | |
| 
 | |
| import torch
 | |
| import torch.nn.functional as F
 | |
| from torch.utils.data import Dataset, DataLoader
 | |
| 
 | |
| # NEW imports:
 | |
| import os
 | |
| import torch.multiprocessing as mp
 | |
| from torch.utils.data.distributed import DistributedSampler
 | |
| from torch.nn.parallel import DistributedDataParallel as DDP
 | |
| from torch.distributed import init_process_group, destroy_process_group
 | |
| 
 | |
| 
 | |
| # NEW: function to initialize a distributed process group (1 process / GPU)
 | |
| # this allows communication among processes
 | |
| def ddp_setup(rank, world_size):
 | |
|     """
 | |
|     Arguments:
 | |
|         rank: a unique process ID
 | |
|         world_size: total number of processes in the group
 | |
|     """
 | |
|     # rank of machine running rank:0 process
 | |
|     # here, we assume all GPUs are on the same machine
 | |
|     os.environ["MASTER_ADDR"] = "localhost"
 | |
|     # any free port on the machine
 | |
|     os.environ["MASTER_PORT"] = "12345"
 | |
| 
 | |
|     # initialize process group
 | |
|     # Windows users may have to use "gloo" instead of "nccl" as backend
 | |
|     # nccl: NVIDIA Collective Communication Library
 | |
|     init_process_group(backend="nccl", rank=rank, world_size=world_size)
 | |
|     torch.cuda.set_device(rank)
 | |
| 
 | |
| 
 | |
| class ToyDataset(Dataset):
 | |
|     def __init__(self, X, y):
 | |
|         self.features = X
 | |
|         self.labels = y
 | |
| 
 | |
|     def __getitem__(self, index):
 | |
|         one_x = self.features[index]
 | |
|         one_y = self.labels[index]
 | |
|         return one_x, one_y
 | |
| 
 | |
|     def __len__(self):
 | |
|         return self.labels.shape[0]
 | |
| 
 | |
| 
 | |
| class NeuralNetwork(torch.nn.Module):
 | |
|     def __init__(self, num_inputs, num_outputs):
 | |
|         super().__init__()
 | |
| 
 | |
|         self.layers = torch.nn.Sequential(
 | |
|             # 1st hidden layer
 | |
|             torch.nn.Linear(num_inputs, 30),
 | |
|             torch.nn.ReLU(),
 | |
| 
 | |
|             # 2nd hidden layer
 | |
|             torch.nn.Linear(30, 20),
 | |
|             torch.nn.ReLU(),
 | |
| 
 | |
|             # output layer
 | |
|             torch.nn.Linear(20, num_outputs),
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         logits = self.layers(x)
 | |
|         return logits
 | |
| 
 | |
| 
 | |
| def prepare_dataset():
 | |
|     X_train = torch.tensor([
 | |
|         [-1.2, 3.1],
 | |
|         [-0.9, 2.9],
 | |
|         [-0.5, 2.6],
 | |
|         [2.3, -1.1],
 | |
|         [2.7, -1.5]
 | |
|     ])
 | |
|     y_train = torch.tensor([0, 0, 0, 1, 1])
 | |
| 
 | |
|     X_test = torch.tensor([
 | |
|         [-0.8, 2.8],
 | |
|         [2.6, -1.6],
 | |
|     ])
 | |
|     y_test = torch.tensor([0, 1])
 | |
| 
 | |
|     train_ds = ToyDataset(X_train, y_train)
 | |
|     test_ds = ToyDataset(X_test, y_test)
 | |
| 
 | |
|     train_loader = DataLoader(
 | |
|         dataset=train_ds,
 | |
|         batch_size=2,
 | |
|         shuffle=False,  # NEW: False because of DistributedSampler below
 | |
|         pin_memory=True,
 | |
|         drop_last=True,
 | |
|         # NEW: chunk batches across GPUs without overlapping samples:
 | |
|         sampler=DistributedSampler(train_ds)  # NEW
 | |
|     )
 | |
|     test_loader = DataLoader(
 | |
|         dataset=test_ds,
 | |
|         batch_size=2,
 | |
|         shuffle=False,
 | |
|     )
 | |
|     return train_loader, test_loader
 | |
| 
 | |
| 
 | |
| # NEW: wrapper
 | |
| def main(rank, world_size, num_epochs):
 | |
| 
 | |
|     ddp_setup(rank, world_size)  # NEW: initialize process groups
 | |
| 
 | |
|     train_loader, test_loader = prepare_dataset()
 | |
|     model = NeuralNetwork(num_inputs=2, num_outputs=2)
 | |
|     model.to(rank)
 | |
|     optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
 | |
| 
 | |
|     model = DDP(model, device_ids=[rank])  # NEW: wrap model with DDP
 | |
|     # the core model is now accessible as model.module
 | |
| 
 | |
|     for epoch in range(num_epochs):
 | |
| 
 | |
|         model.train()
 | |
|         for features, labels in train_loader:
 | |
| 
 | |
|             features, labels = features.to(rank), labels.to(rank)  # New: use rank
 | |
|             logits = model(features)
 | |
|             loss = F.cross_entropy(logits, labels)  # Loss function
 | |
| 
 | |
|             optimizer.zero_grad()
 | |
|             loss.backward()
 | |
|             optimizer.step()
 | |
| 
 | |
|             # LOGGING
 | |
|             print(f"[GPU{rank}] Epoch: {epoch+1:03d}/{num_epochs:03d}"
 | |
|                   f" | Batchsize {labels.shape[0]:03d}"
 | |
|                   f" | Train/Val Loss: {loss:.2f}")
 | |
| 
 | |
|     model.eval()
 | |
|     train_acc = compute_accuracy(model, train_loader, device=rank)
 | |
|     print(f"[GPU{rank}] Training accuracy", train_acc)
 | |
|     test_acc = compute_accuracy(model, test_loader, device=rank)
 | |
|     print(f"[GPU{rank}] Test accuracy", test_acc)
 | |
| 
 | |
|     destroy_process_group()  # NEW: cleanly exit distributed mode
 | |
| 
 | |
| 
 | |
| def compute_accuracy(model, dataloader, device):
 | |
|     model = model.eval()
 | |
|     correct = 0.0
 | |
|     total_examples = 0
 | |
| 
 | |
|     for idx, (features, labels) in enumerate(dataloader):
 | |
|         features, labels = features.to(device), labels.to(device)
 | |
| 
 | |
|         with torch.no_grad():
 | |
|             logits = model(features)
 | |
|         predictions = torch.argmax(logits, dim=1)
 | |
|         compare = labels == predictions
 | |
|         correct += torch.sum(compare)
 | |
|         total_examples += len(compare)
 | |
|     return (correct / total_examples).item()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     print("PyTorch version:", torch.__version__)
 | |
|     print("CUDA available:", torch.cuda.is_available())
 | |
|     print("Number of GPUs available:", torch.cuda.device_count())
 | |
| 
 | |
|     torch.manual_seed(123)
 | |
| 
 | |
|     # NEW: spawn new processes
 | |
|     # note that spawn will automatically pass the rank
 | |
|     num_epochs = 3
 | |
|     world_size = torch.cuda.device_count()
 | |
|     mp.spawn(main, args=(world_size, num_epochs), nprocs=world_size)
 | |
|     # nprocs=world_size spawns one process per GPU
 |