mirror of
				https://github.com/rasbt/LLMs-from-scratch.git
				synced 2025-11-03 19:30:26 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			79 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
 | 
						|
# Source for "Build a Large Language Model From Scratch"
 | 
						|
#   - https://www.manning.com/books/build-a-large-language-model-from-scratch
 | 
						|
# Code: https://github.com/rasbt/LLMs-from-scratch
 | 
						|
 | 
						|
from pathlib import Path
 | 
						|
import sys
 | 
						|
 | 
						|
import tiktoken
 | 
						|
import torch
 | 
						|
import chainlit
 | 
						|
 | 
						|
from previous_chapters import (
 | 
						|
    classify_review,
 | 
						|
    GPTModel
 | 
						|
)
 | 
						|
 | 
						|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | 
						|
 | 
						|
 | 
						|
def get_model_and_tokenizer():
 | 
						|
    """
 | 
						|
    Code to load finetuned GPT-2 model generated in chapter 6.
 | 
						|
    This requires that you run the code in chapter 6 first, which generates the necessary model.pth file.
 | 
						|
    """
 | 
						|
 | 
						|
    GPT_CONFIG_124M = {
 | 
						|
        "vocab_size": 50257,     # Vocabulary size
 | 
						|
        "context_length": 1024,  # Context length
 | 
						|
        "emb_dim": 768,          # Embedding dimension
 | 
						|
        "n_heads": 12,           # Number of attention heads
 | 
						|
        "n_layers": 12,          # Number of layers
 | 
						|
        "drop_rate": 0.1,        # Dropout rate
 | 
						|
        "qkv_bias": True         # Query-key-value bias
 | 
						|
    }
 | 
						|
 | 
						|
    tokenizer = tiktoken.get_encoding("gpt2")
 | 
						|
 | 
						|
    model_path = Path("..") / "01_main-chapter-code" / "review_classifier.pth"
 | 
						|
    if not model_path.exists():
 | 
						|
        print(
 | 
						|
            f"Could not find the {model_path} file. Please run the chapter 6 code"
 | 
						|
            " (ch06.ipynb) to generate the review_classifier.pth file."
 | 
						|
        )
 | 
						|
        sys.exit()
 | 
						|
 | 
						|
    # Instantiate model
 | 
						|
    model = GPTModel(GPT_CONFIG_124M)
 | 
						|
 | 
						|
    # Convert model to classifier as in section 6.5 in ch06.ipynb
 | 
						|
    num_classes = 2
 | 
						|
    model.out_head = torch.nn.Linear(in_features=GPT_CONFIG_124M["emb_dim"], out_features=num_classes)
 | 
						|
 | 
						|
    # Then load model weights
 | 
						|
    checkpoint = torch.load(model_path, map_location=device, weights_only=True)
 | 
						|
    model.load_state_dict(checkpoint)
 | 
						|
    model.to(device)
 | 
						|
    model.eval()
 | 
						|
 | 
						|
    return tokenizer, model
 | 
						|
 | 
						|
 | 
						|
# Obtain the necessary tokenizer and model files for the chainlit function below
 | 
						|
tokenizer, model = get_model_and_tokenizer()
 | 
						|
 | 
						|
 | 
						|
@chainlit.on_message
 | 
						|
async def main(message: chainlit.Message):
 | 
						|
    """
 | 
						|
    The main Chainlit function.
 | 
						|
    """
 | 
						|
    user_input = message.content
 | 
						|
 | 
						|
    label = classify_review(user_input, model, tokenizer, device, max_length=120)
 | 
						|
 | 
						|
    await chainlit.Message(
 | 
						|
        content=f"{label}",  # This returns the model response to the interface
 | 
						|
    ).send()
 |